|
|
Line 2: |
Line 2: |
|
| |
|
| We define: | | We define: |
| | |
| <math>\rho(\overrightarrow{r},t)=\sum\rho_{i}(\overrightarrow{r},t)</math> | | <math>\rho(\overrightarrow{r},t)=\sum\rho_{i}(\overrightarrow{r},t)</math> |
|
| |
|
Line 10: |
Line 11: |
| <math>\overrightarrow{j}(\overrightarrow{r},t)=\frac{\hbar}{2im}\int\cdots\int d^{3}r_{3}d^{3}r_{3}\cdots d^{3}r_{N}(\Psi^{\star}\nabla_{1}\Psi-\Psi\nabla_{1}\Psi^{\star})</math> | | <math>\overrightarrow{j}(\overrightarrow{r},t)=\frac{\hbar}{2im}\int\cdots\int d^{3}r_{3}d^{3}r_{3}\cdots d^{3}r_{N}(\Psi^{\star}\nabla_{1}\Psi-\Psi\nabla_{1}\Psi^{\star})</math> |
|
| |
|
| To verify: <math>\frac{\partial\rho}{\partial t}+\nabla\cdot\overrightarrow{j}=0</math>
| | Prove the following relation: <math>\frac{\partial\rho}{\partial t}+\nabla\cdot\overrightarrow{j}=0</math> |
|
| |
|
| Solution: | | Solution: |
Assume that the Hamiltonian for a system of N particles is
, and
is the wave fuction.
We define:
Prove the following relation:
Solution:
,