Phy5645/schrodingerequationhomework2: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 2: Line 2:


We define:
We define:
<math>\rho(\overrightarrow{r},t)=\sum\rho_{i}(\overrightarrow{r},t)</math>
<math>\rho(\overrightarrow{r},t)=\sum\rho_{i}(\overrightarrow{r},t)</math>


Line 10: Line 11:
<math>\overrightarrow{j}(\overrightarrow{r},t)=\frac{\hbar}{2im}\int\cdots\int d^{3}r_{3}d^{3}r_{3}\cdots d^{3}r_{N}(\Psi^{\star}\nabla_{1}\Psi-\Psi\nabla_{1}\Psi^{\star})</math>
<math>\overrightarrow{j}(\overrightarrow{r},t)=\frac{\hbar}{2im}\int\cdots\int d^{3}r_{3}d^{3}r_{3}\cdots d^{3}r_{N}(\Psi^{\star}\nabla_{1}\Psi-\Psi\nabla_{1}\Psi^{\star})</math>


To verify: <math>\frac{\partial\rho}{\partial t}+\nabla\cdot\overrightarrow{j}=0</math>
Prove the following relation: <math>\frac{\partial\rho}{\partial t}+\nabla\cdot\overrightarrow{j}=0</math>


Solution:
Solution:

Revision as of 23:40, 9 December 2009

Assume that the Hamiltonian for a system of N particles is , and is the wave fuction.

We define:

Prove the following relation:

Solution:

,