Phy5645/schrodingerequationhomework2: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 27: Line 27:
<math>\begin{cases}
<math>\begin{cases}
  i\hbar\frac{\partial\Psi}{\partial t}=\sum_{k}(-\frac{\hbar^{2}}{2m}\nabla^{2})\Psi+\sum_{jk}v_{jk}\Psi\\
  i\hbar\frac{\partial\Psi}{\partial t}=\sum_{k}(-\frac{\hbar^{2}}{2m}\nabla^{2})\Psi+\sum_{jk}v_{jk}\Psi\\
-\hbar i\frac{\partial\Psi^{\star}}{\partial t}=\sum_{k}(-\frac{\hbar^{2}}{2m}\nabla_{k}^{2})\Psi^{\star}+\sum_{jk}v_{jk}\Psi^{\star}\end{cases}</math>
-i\hbar\frac{\partial\Psi^{\star}}{\partial t}=\sum_{k}(-\frac{\hbar^{2}}{2m}\nabla_{k}^{2})\Psi^{\star}+\sum_{jk}v_{jk}\Psi^{\star}\end{cases}</math>


<math>\frac{\partial\Psi}{\partial t}</math>,<math>\frac{\partial\Psi^{\star}}{\partial t}</math>
<math>\frac{\partial\Psi}{\partial t}</math>,<math>\frac{\partial\Psi^{\star}}{\partial t}</math>

Revision as of 23:49, 9 December 2009

Assume that the Hamiltonian for a system of N particles is , and is the wave fuction.

We define:

Prove the following relation:

Solution:

By definition:

The wave function of many particles system satisfies the Schrodinger equation for many particles system:

,