|
|
Line 21: |
Line 21: |
| <math>=\sum_{i}\int\cdots\int d^{3}r_{1}\cdots d^{3}r_{i-1}d^{3}r_{i+1}\cdots d^{3}r_{N}(\Psi^{\star}\frac{\partial\Psi}{\partial t}+\frac{\partial\Psi^{\star}}{\partial t}\Psi)</math> | | <math>=\sum_{i}\int\cdots\int d^{3}r_{1}\cdots d^{3}r_{i-1}d^{3}r_{i+1}\cdots d^{3}r_{N}(\Psi^{\star}\frac{\partial\Psi}{\partial t}+\frac{\partial\Psi^{\star}}{\partial t}\Psi)</math> |
|
| |
|
| <math>=\sum_{i}\rho_{i}(\overrightarrow{r_{i}},t)</math> | | <math>=\sum_{i}\rho_{i}(\overrightarrow{r_{i}},t) (1)</math> |
|
| |
|
| The wave function of many particles system <math>\Psi(\overrightarrow{r_{1}}\overrightarrow{r_{2}}\cdots\overrightarrow{r_{N}},t)</math> satisfies the Schrodinger equation for many particles system: | | The wave function of many particles system <math>\Psi(\overrightarrow{r_{1}}\overrightarrow{r_{2}}\cdots\overrightarrow{r_{N}},t)</math> satisfies the Schrodinger equation for many particles system: |
Assume that the Hamiltonian for a system of N particles is
, and
is the wave fuction.
We define:
Prove the following relation:
Solution:
By definition:
The wave function of many particles system
satisfies the Schrodinger equation for many particles system:
,