Phy5645/schrodingerequationhomework2: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 21: Line 21:
<math>=\sum_{i}\int\cdots\int d^{3}r_{1}\cdots d^{3}r_{i-1}d^{3}r_{i+1}\cdots d^{3}r_{N}(\Psi^{\star}\frac{\partial\Psi}{\partial t}+\frac{\partial\Psi^{\star}}{\partial t}\Psi)</math>
<math>=\sum_{i}\int\cdots\int d^{3}r_{1}\cdots d^{3}r_{i-1}d^{3}r_{i+1}\cdots d^{3}r_{N}(\Psi^{\star}\frac{\partial\Psi}{\partial t}+\frac{\partial\Psi^{\star}}{\partial t}\Psi)</math>


<math>=\sum_{i}\rho_{i}(\overrightarrow{r_{i}},t)       (1)</math>
<math>=\sum_{i}\rho_{i}(\overrightarrow{r_{i}},t)     \quad (1)</math>


The wave function of many particles system <math>\Psi(\overrightarrow{r_{1}}\overrightarrow{r_{2}}\cdots\overrightarrow{r_{N}},t)</math> satisfies the Schrodinger equation for many particles system:
The wave function of many particles system <math>\Psi(\overrightarrow{r_{1}}\overrightarrow{r_{2}}\cdots\overrightarrow{r_{N}},t)</math> satisfies the Schrodinger equation for many particles system:

Revision as of 23:54, 9 December 2009

Assume that the Hamiltonian for a system of N particles is , and is the wave fuction.

We define:

Prove the following relation:

Solution:

By definition:

The wave function of many particles system satisfies the Schrodinger equation for many particles system:

,