Phy5645/schrodingerequationhomework2: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 34: Line 34:


<math>=-\int\cdots\int d^{3}r_{1}\cdots d^{3}r_{i-1}d^{3}r_{i+1}\cdots d^{3}r_{N}\cdot\sum_{k}\frac{\hbar}{2im}\nabla_{k}\cdot(\Psi^{\star}\nabla_{k}\Psi-\Psi\nabla_{k}\Psi^{\star})</math>
<math>=-\int\cdots\int d^{3}r_{1}\cdots d^{3}r_{i-1}d^{3}r_{i+1}\cdots d^{3}r_{N}\cdot\sum_{k}\frac{\hbar}{2im}\nabla_{k}\cdot(\Psi^{\star}\nabla_{k}\Psi-\Psi\nabla_{k}\Psi^{\star})</math>
We can also have:


<math>\nabla\cdot\overrightarrow{j}\equiv\sum_{i}\nabla_{i}\cdot\sum_{i}j_{i}(\overrightarrow{r_{i}},t)</math>
<math>\nabla\cdot\overrightarrow{j}\equiv\sum_{i}\nabla_{i}\cdot\sum_{i}j_{i}(\overrightarrow{r_{i}},t)</math>

Revision as of 23:57, 9 December 2009

Assume that the Hamiltonian for a system of N particles is , and is the wave fuction.

We define:

Prove the following relation:

Solution:

By definition:

The wave function of many particles system satisfies the Schrodinger equation for many particles system:

Substitute and in to formula , we get:

We can also have: