|
|
Line 34: |
Line 34: |
|
| |
|
| <math>=-\int\cdots\int d^{3}r_{1}\cdots d^{3}r_{i-1}d^{3}r_{i+1}\cdots d^{3}r_{N}\cdot\sum_{k}\frac{\hbar}{2im}\nabla_{k}\cdot(\Psi^{\star}\nabla_{k}\Psi-\Psi\nabla_{k}\Psi^{\star})</math> | | <math>=-\int\cdots\int d^{3}r_{1}\cdots d^{3}r_{i-1}d^{3}r_{i+1}\cdots d^{3}r_{N}\cdot\sum_{k}\frac{\hbar}{2im}\nabla_{k}\cdot(\Psi^{\star}\nabla_{k}\Psi-\Psi\nabla_{k}\Psi^{\star})</math> |
| | |
| | We can also have: |
|
| |
|
| <math>\nabla\cdot\overrightarrow{j}\equiv\sum_{i}\nabla_{i}\cdot\sum_{i}j_{i}(\overrightarrow{r_{i}},t)</math> | | <math>\nabla\cdot\overrightarrow{j}\equiv\sum_{i}\nabla_{i}\cdot\sum_{i}j_{i}(\overrightarrow{r_{i}},t)</math> |
Assume that the Hamiltonian for a system of N particles is
, and
is the wave fuction.
We define:
Prove the following relation:
Solution:
By definition:
The wave function of many particles system
satisfies the Schrodinger equation for many particles system:
Substitute
and
in to formula
, we get:
We can also have: