|
|
Line 43: |
Line 43: |
| <math>=\sum_{i}\nabla_{i}\cdot\overrightarrow{j_{i}}(\overrightarrow{r_{i}},t)</math> | | <math>=\sum_{i}\nabla_{i}\cdot\overrightarrow{j_{i}}(\overrightarrow{r_{i}},t)</math> |
|
| |
|
| <math>=\frac{\hbar}{2im}\sum_{i}\int\cdots\int d^{3}r_{1}\cdots d^{3}r_{i-1}d^{3}r_{i+1}\cdots d^{3}r_{N}\times\nabla_{j}\cdot(\Psi^{\star}\nabla_{k}\Psi-\Psi\nabla_{k}\Psi^{\star})</math> | | <math>=\frac{\hbar}{2im}\sum_{i}\int\cdots\int d^{3}r_{1}\cdots d^{3}r_{i-1}d^{3}r_{i+1}\cdots d^{3}r_{N}\times\nabla_{j}\cdot(\Psi^{\star}\nabla_{k}\Psi-\Psi\nabla_{k}\Psi^{\star}) \quad (2)</math> |
|
| |
|
| <math>\frac{\partial\rho}{\partial t}=\sum_{i}\frac{\partial\rho}{\partial t}=\sum_{i}\int\cdots\int d^{3}r_{1}\cdots d^{3}r_{i-1}d^{3}r_{i+1}\cdots d^{3}r_{N}\times\sum_{k}\frac{\hbar}{2im}\nabla_{k}\cdot(\Psi^{\star}\nabla_{k}\Psi-\Psi\nabla_{k}\Psi^{\star})</math> | | <math>\frac{\partial\rho}{\partial t}=\sum_{i}\frac{\partial\rho}{\partial t}=\sum_{i}\int\cdots\int d^{3}r_{1}\cdots d^{3}r_{i-1}d^{3}r_{i+1}\cdots d^{3}r_{N}\times\sum_{k}\frac{\hbar}{2im}\nabla_{k}\cdot(\Psi^{\star}\nabla_{k}\Psi-\Psi\nabla_{k}\Psi^{\star}) (3) </math> |
|
| |
|
| <math>i\neq k</math> | | <math>i\neq k</math> |
Assume that the Hamiltonian for a system of N particles is
, and
is the wave fuction.
We define:
Prove the following relation:
Solution:
By definition:
The wave function of many particles system
satisfies the Schrodinger equation for many particles system:
Substitute
and
in to formula
, we get:
We can also have: