Phy5645/schrodingerequationhomework2: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 43: Line 43:
<math>=\sum_{i}\nabla_{i}\cdot\overrightarrow{j_{i}}(\overrightarrow{r_{i}},t)</math>
<math>=\sum_{i}\nabla_{i}\cdot\overrightarrow{j_{i}}(\overrightarrow{r_{i}},t)</math>


<math>=\frac{\hbar}{2im}\sum_{i}\int\cdots\int d^{3}r_{1}\cdots d^{3}r_{i-1}d^{3}r_{i+1}\cdots d^{3}r_{N}\times\nabla_{j}\cdot(\Psi^{\star}\nabla_{k}\Psi-\Psi\nabla_{k}\Psi^{\star})</math>
<math>=\frac{\hbar}{2im}\sum_{i}\int\cdots\int d^{3}r_{1}\cdots d^{3}r_{i-1}d^{3}r_{i+1}\cdots d^{3}r_{N}\times\nabla_{j}\cdot(\Psi^{\star}\nabla_{k}\Psi-\Psi\nabla_{k}\Psi^{\star}) \quad (2)</math>


<math>\frac{\partial\rho}{\partial t}=\sum_{i}\frac{\partial\rho}{\partial t}=\sum_{i}\int\cdots\int d^{3}r_{1}\cdots d^{3}r_{i-1}d^{3}r_{i+1}\cdots d^{3}r_{N}\times\sum_{k}\frac{\hbar}{2im}\nabla_{k}\cdot(\Psi^{\star}\nabla_{k}\Psi-\Psi\nabla_{k}\Psi^{\star})</math>
<math>\frac{\partial\rho}{\partial t}=\sum_{i}\frac{\partial\rho}{\partial t}=\sum_{i}\int\cdots\int d^{3}r_{1}\cdots d^{3}r_{i-1}d^{3}r_{i+1}\cdots d^{3}r_{N}\times\sum_{k}\frac{\hbar}{2im}\nabla_{k}\cdot(\Psi^{\star}\nabla_{k}\Psi-\Psi\nabla_{k}\Psi^{\star}) (3) </math>


<math>i\neq k</math>
<math>i\neq k</math>

Revision as of 23:58, 9 December 2009

Assume that the Hamiltonian for a system of N particles is , and is the wave fuction.

We define:

Prove the following relation:

Solution:

By definition:

The wave function of many particles system satisfies the Schrodinger equation for many particles system:

Substitute and in to formula , we get:

We can also have: