Phy5645/Energy conservation: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
Line 19: Line 19:


(2):first we find the time derivative of energy density:
(2):first we find the time derivative of energy density:
<math>\frac{\partial W}{\partial t}=\frac{\partial}{\partial t}\left(\nabla\psi^*\nabla\psi+\psi^*\nabla\psi\right)
<math>\frac{\partial W}{\partial t}=\frac{\partial}{\partial t}\left(\nabla\psi^*\nabla\psi+\psi^*\nabla\psi\right)
=\frac{\hbar^2}{2m}\left(\nabla\psi^*\nabla\frac{\partial\psi}{\partial t} + \nabla\frac{\partial\psi^*}{\partial t}\nabla\psi\right) + \frac{\partial\psi^*}{\partial t}\nabla\psi+\psi^*\nabla\frac{\partial\psi}{\partial t}</math>,
=\frac{\hbar^2}{2m}\left(\nabla\psi^*\nabla\frac{\partial\psi}{\partial t} + \nabla\frac{\partial\psi^*}{\partial t}\nabla\psi\right) + \frac{\partial\psi^*}{\partial t}\nabla\psi+\psi^*\nabla\frac{\partial\psi}{\partial t}</math>,

Revision as of 00:10, 10 December 2009

Example 1

Consider a particle moving in a potential field , (1) Prove the average energy equation: , where W is energy density, (2) Prove the energy conservation equation: , where is energy flux density:

Proof: (1):the energy operator in three dimensions is: so the average energy in state is: , Using: , hence: ,

Using Gauss Theorem for the last term: , with the condition: , for infinite surface.

Hence:

(2):first we find the time derivative of energy density:

, ,

Using Schrodinger Equations: , and, ,

Also the energy flux density is: ,

So:, Hence: