|
|
Line 19: |
Line 19: |
|
| |
|
| (2):first we find the time derivative of energy density: | | (2):first we find the time derivative of energy density: |
| | |
| <math>\frac{\partial W}{\partial t}=\frac{\partial}{\partial t}\left(\nabla\psi^*\nabla\psi+\psi^*\nabla\psi\right) | | <math>\frac{\partial W}{\partial t}=\frac{\partial}{\partial t}\left(\nabla\psi^*\nabla\psi+\psi^*\nabla\psi\right) |
| =\frac{\hbar^2}{2m}\left(\nabla\psi^*\nabla\frac{\partial\psi}{\partial t} + \nabla\frac{\partial\psi^*}{\partial t}\nabla\psi\right) + \frac{\partial\psi^*}{\partial t}\nabla\psi+\psi^*\nabla\frac{\partial\psi}{\partial t}</math>, | | =\frac{\hbar^2}{2m}\left(\nabla\psi^*\nabla\frac{\partial\psi}{\partial t} + \nabla\frac{\partial\psi^*}{\partial t}\nabla\psi\right) + \frac{\partial\psi^*}{\partial t}\nabla\psi+\psi^*\nabla\frac{\partial\psi}{\partial t}</math>, |
Revision as of 00:10, 10 December 2009
Example 1
Consider a particle moving in a potential field
, (1) Prove the average energy equation:
,
where W is energy density, (2) Prove the energy conservation equation:
, where
is energy flux density:
Proof:
(1):the energy operator in three dimensions is:
so the average energy in state
is:
,
Using:
,
hence:
,
Using Gauss Theorem for the last term:
,
with the condition:
, for infinite surface.
Hence:
(2):first we find the time derivative of energy density:
,
,
Using Schrodinger Equations:
,
and,
,
Also the energy flux density is:
,
So:
,
Hence: