Harmonic Oscillator in an Electric Field: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<math>V(r)=\frac{1}{2}m{\omega }^2{r}^2</math>'''in an electric field''' <math>E=E_{0}(x)</math> '''Find the eigen states and eigen values of the patricle''' | <math>V(r)=\frac{1}{2}m{\omega }^2{r}^2</math>'''in an electric field''' <math>E=E_{0}(x)</math> '''Find the eigen states and eigen values of the patricle''' | ||
the Hamiltonian of the system is: | the Hamiltonian of the system is: | ||
<math></math> | <math>H=\frac{P^2}{2m}+\frac{1}{2}m\omega ^2r^2-eE_{0}x</math> | ||
we seprate the Hamiltonian (H=H_{x}+H_{y}+H_{z}) where | |||
<math>H_{x}=\frac{p_{x}^{2}}{2m}+\frac{1}{2}m\omega ^2x^2-eE_{0}x</math> | |||
<math>H_{y}=\frac{p_{y}^{2}}{2m}+\frac{1}{2}m\omega ^2y^2 </math> | |||
<math>H_{z}=\frac{p_{z}^{2}}{2m}+\frac{1}{2}m\omega ^2z^2</math> | |||
Notice that <math>H_{x} ,H_{z}</math>are identical to the Hamiltonian of the one dimensional harmonic oscillator, so we can write the wave function <math>Insert formula here</math> |
Revision as of 22:34, 10 December 2009
- consider a particle with charge e moving under three dimensional isotropic harmonic potential l
in an electric field Find the eigen states and eigen values of the patricle
the Hamiltonian of the system is:
we seprate the Hamiltonian (H=H_{x}+H_{y}+H_{z}) where
Notice that are identical to the Hamiltonian of the one dimensional harmonic oscillator, so we can write the wave function