Harmonic Oscillator in an Electric Field: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 5: Line 5:
<math>H=\frac{P^2}{2m}+\frac{1}{2}m\omega ^2r^2-eE_{0}x</math>
<math>H=\frac{P^2}{2m}+\frac{1}{2}m\omega ^2r^2-eE_{0}x</math>


we seprate the Hamiltonian (H=H_{x}+H_{y}+H_{z}) where
we seprate the Hamiltonian (<math>H=H_{x}+H_{y}+H_{z} f</math>) where
   
   
<math>H_{x}=\frac{p_{x}^{2}}{2m}+\frac{1}{2}m\omega ^2x^2-eE_{0}x</math>
<math>H_{x}=\frac{p_{x}^{2}}{2m}+\frac{1}{2}m\omega ^2x^2-eE_{0}x</math>
Line 13: Line 13:
<math>H_{z}=\frac{p_{z}^{2}}{2m}+\frac{1}{2}m\omega ^2z^2</math>  
<math>H_{z}=\frac{p_{z}^{2}}{2m}+\frac{1}{2}m\omega ^2z^2</math>  


Notice that <math>H_{x} ,H_{z}</math>are identical to the Hamiltonian of the one dimensional harmonic oscillator, so we can write the wave function <math>Insert formula here</math>
Notice that <math>H_{x} ,H_{z}</math>are identical to the Hamiltonian of the one dimensional harmonic oscillator, so we can write the wave function
<math>\psi (x,y,z)=\psi _{1}(x)\psi _{2}(y)\psi _{3}(z)</math>, where<math>\psi _{2}(y)<\math>, and </math>\psi _{3}(z) </math>are the wave functions of the one dimensional harmonic oscillator:

Revision as of 22:43, 10 December 2009

consider a particle with charge e moving under three dimensional isotropic harmonic potential l

in an electric field Find the eigen states and eigen values of the patricle

the Hamiltonian of the system is:

we seprate the Hamiltonian () where

Notice that are identical to the Hamiltonian of the one dimensional harmonic oscillator, so we can write the wave function

, whereFailed to parse (unknown function "\math"): {\displaystyle \psi _{2}(y)<\math>, and }
\psi _{3}(z) </math>are the wave functions of the one dimensional harmonic oscillator: