Harmonic Oscillator in an Electric Field: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 5: | Line 5: | ||
<math>H=\frac{P^2}{2m}+\frac{1}{2}m\omega ^2r^2-eE_{0}x</math> | <math>H=\frac{P^2}{2m}+\frac{1}{2}m\omega ^2r^2-eE_{0}x</math> | ||
we seprate the Hamiltonian (H=H_{x}+H_{y}+H_{z}) where | we seprate the Hamiltonian (<math>H=H_{x}+H_{y}+H_{z} f</math>) where | ||
<math>H_{x}=\frac{p_{x}^{2}}{2m}+\frac{1}{2}m\omega ^2x^2-eE_{0}x</math> | <math>H_{x}=\frac{p_{x}^{2}}{2m}+\frac{1}{2}m\omega ^2x^2-eE_{0}x</math> | ||
Line 13: | Line 13: | ||
<math>H_{z}=\frac{p_{z}^{2}}{2m}+\frac{1}{2}m\omega ^2z^2</math> | <math>H_{z}=\frac{p_{z}^{2}}{2m}+\frac{1}{2}m\omega ^2z^2</math> | ||
Notice that <math>H_{x} ,H_{z}</math>are identical to the Hamiltonian of the one dimensional harmonic oscillator, so we can write the wave function <math> | Notice that <math>H_{x} ,H_{z}</math>are identical to the Hamiltonian of the one dimensional harmonic oscillator, so we can write the wave function | ||
<math>\psi (x,y,z)=\psi _{1}(x)\psi _{2}(y)\psi _{3}(z)</math>, where<math>\psi _{2}(y)<\math>, and </math>\psi _{3}(z) </math>are the wave functions of the one dimensional harmonic oscillator: |
Revision as of 22:43, 10 December 2009
- consider a particle with charge e moving under three dimensional isotropic harmonic potential l
in an electric field Find the eigen states and eigen values of the patricle
the Hamiltonian of the system is:
we seprate the Hamiltonian () where
Notice that are identical to the Hamiltonian of the one dimensional harmonic oscillator, so we can write the wave function
, whereFailed to parse (unknown function "\math"): {\displaystyle \psi _{2}(y)<\math>, and }
\psi _{3}(z) </math>are the wave functions of the one dimensional harmonic oscillator: