Phy5646 PerturbationExample1: Difference between revisions
(New page: Posted by student team #5 (Chelsey Morien, Anthony Kuchera, Jeff Klatsky) Adapted from Zettili Quantum Mechanics - Concepts and Application; Solved Problem 9.6 Consider a system whose Ha...) |
No edit summary |
||
Line 76: | Line 76: | ||
<math> | <math> | ||
\begin{pmatrix} | det\begin{pmatrix} | ||
(1 + \lambda)E_0 - E & 0 & 0 & 0 \\ | (1 + \lambda)E_0 - E & 0 & 0 & 0 \\ | ||
0 & 8E_0 - E & 0 & 0 \\ | 0 & 8E_0 - E & 0 & 0 \\ | ||
0 & 0 & 3E_0 - E & -2\lambda E_0 \\ | 0 & 0 & 3E_0 - E & -2\lambda E_0 \\ | ||
0 & 0 & -2E_0\lambda & 7E_0 - E | 0 & 0 & -2E_0\lambda & 7E_0 - E | ||
\end{pmatrix} | \end{pmatrix} = 0 | ||
</math> | </math> | ||
which is equivalent to: | |||
<math> (E_0 + \lambda E_0 - E)(8E_0 - E)\left[(3E_0 - E)(7E_0 - E) - 4\lambda^2E_0^2 \right] = 0 </math> | |||
Solving the above equation for E yields the following '''''exact''''' eigenenergies: | |||
<math>E_1^{ } =(1+\lambda)E_{0} </math> | |||
<math>E_2^{ } = 8E_{0}</math> | |||
<math>E_3 = (5 - 2\sqrt{1+\lambda^2})E_0</math> | |||
<math>E_4 = (5 - 2\sqrt{1+\lambda^2})E_0</math> | |||
Since we have defined <math>\lambda << 1 </math>, we can expand <math>\sqrt{1+\lambda^2}</math>, keeping only terms up to second order in <math> \lambda_{ }^{ } </math>: | |||
<math>\sqrt{1+\lambda^2} \simeq 1 + \frac{\lambda^2}{2}</math>, which leads to: | |||
<math>E_3 \simeq (3 - \lambda^2)E_0</math> | |||
<math>E_4 \simeq (7 + \lambda^2)E_0</math> | |||
(c) |
Revision as of 16:56, 5 February 2010
Posted by student team #5 (Chelsey Morien, Anthony Kuchera, Jeff Klatsky)
Adapted from Zettili Quantum Mechanics - Concepts and Application; Solved Problem 9.6
Consider a system whose Hamiltonian is given by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_0\begin{pmatrix} 1 + \lambda & 0 & 0 & 0 \\ 0 & 8 & 0 & 0 \\ 0 & 0 & 3 & -2\lambda \\ 0 & 0 & -2\lambda & 7 \end{pmatrix} } where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda \ll 1 }
(a) By decomposing the Hamiltonian into Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal H = \mathcal H_0 + \mathcal H' } , find the eigenvalues and eigenvectors of the unperturbed Hamiltonian.
(b) Diagonalize Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal H } to find the exact eigenvalues of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal H } ; expand each eigenvalue to the second power of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda }
(c) Using first and second-order non-degenerate perturbation theory, find the approximate eigenenergies of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal H } and the eigenstates to the first order. Compare these with the exact values obtained in (b).
Solution:
(a) The matrix of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal H } can be separated:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal H = \mathcal H_0 + \mathcal H' = E_0\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 8 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 7 \end{pmatrix} + E_0\begin{pmatrix} \lambda & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -2\lambda \\ 0 & 0 & -2\lambda & 0 \end{pmatrix} }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal H_0 } is already diagonalized, so reading off its eigenvalues and eigenstates are trivial:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_1^{(0)} = E_0,} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_2^{(0)} = 8E_0,} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_3^{(0)} = 3E_0,} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_4^{(0)} = 7E_0}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\psi_1\rangle = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} ,} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\psi_2\rangle = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} ,} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\psi_3\rangle = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} ,} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\psi_4\rangle = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} }
(b) The diagonalization of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal H } leads to the following equation:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle det\begin{pmatrix} (1 + \lambda)E_0 - E & 0 & 0 & 0 \\ 0 & 8E_0 - E & 0 & 0 \\ 0 & 0 & 3E_0 - E & -2\lambda E_0 \\ 0 & 0 & -2E_0\lambda & 7E_0 - E \end{pmatrix} = 0 }
which is equivalent to:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (E_0 + \lambda E_0 - E)(8E_0 - E)\left[(3E_0 - E)(7E_0 - E) - 4\lambda^2E_0^2 \right] = 0 }
Solving the above equation for E yields the following exact eigenenergies:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_1^{ } =(1+\lambda)E_{0} }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_2^{ } = 8E_{0}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_3 = (5 - 2\sqrt{1+\lambda^2})E_0}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_4 = (5 - 2\sqrt{1+\lambda^2})E_0}
Since we have defined Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda << 1 } , we can expand Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{1+\lambda^2}} , keeping only terms up to second order in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda_{ }^{ } } :
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{1+\lambda^2} \simeq 1 + \frac{\lambda^2}{2}} , which leads to:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_3 \simeq (3 - \lambda^2)E_0}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_4 \simeq (7 + \lambda^2)E_0}
(c)