A solved problem for spins: Difference between revisions
Jump to navigation
Jump to search
(New page: An electron is at rest in an oscillating magnetic field <math>B=B_{0}Cos\left ( \omega t \right )\hat{k}</math> where <math>B_{0}</math> and <math>omega</math> are constants. (a) Cons...) |
No edit summary |
||
Line 18: | Line 18: | ||
Solution: | Solution: | ||
(a) | |||
<math>H=-\mu \mathbf{B}.\mathbf{S}=-\mu B_{0}Cos(\omega t)S_{z}= -\frac{\mu B_{0} \hbar}{2}Cos(\omega t)\begin{pmatrix} | <math>H=-\mu \mathbf{B}.\mathbf{S}=-\mu B_{0}Cos(\omega t)S_{z}= -\frac{\mu B_{0} \hbar}{2}Cos(\omega t)\begin{pmatrix} | ||
Line 24: | Line 26: | ||
(b) | (b) | ||
<math>\chi (t)=\begin{pmatrix} | <math>\chi (t)=\begin{pmatrix} | ||
\alpha (t)\\\beta (t)) | \alpha (t)\\\beta (t)) | ||
Line 34: | Line 37: | ||
\end{pmatrix}=\mathbf{H}\chi =-\frac{\mu B_{0} \hbar}{2}Cos(\omega t)\begin{pmatrix} | \end{pmatrix}=\mathbf{H}\chi =-\frac{\mu B_{0} \hbar}{2}Cos(\omega t)\begin{pmatrix} | ||
1 &0 \\ | 1 &0 \\ | ||
0 &-1\end{pmatrix}</math> | 0 &-1\end{pmatrix}\begin{pmatrix} | ||
\alpha \\ | |||
\beta | |||
\end{pmatrix}=-\frac{\mu B_{0}\hbar}{2}Cos(\omega t)\begin{pmatrix} | |||
\alpha \\ -\beta | |||
\end{pmatrix}</math> | |||
<math>\dot{\alpha }=\frac{i\mu B_{0}}{2}Cos(\omega t)\alpha \Rightarrow \frac{\mathrm{d} \alpha }{ \alpha }=\frac{i\mu B_{0}}{2}Cos(\omega t)dt\Rightarrow Ln\alpha =\frac{i\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }+constant.</math> | |||
<math>\alpha (t)=Ae^{\frac{i\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }};\alpha (0)=A=\frac{1}{\sqrt{2}}</math>, so <math>\alpha (t)=\frac{1}{\sqrt{2}}e^{\frac{i\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }}</math> | |||
<math>\dot{\beta }=-i\frac{\mu B_{0}}{2}Cos(\omega t)\beta \Rightarrow \beta (t)=\frac{1}{\sqrt{2}}e^{-i\frac{\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }}\Rightarrow \chi (t)=\frac{1}{\sqrt{2}}\begin{pmatrix} e^{i\frac{\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }}\\ e^{-i\frac{\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }} \end{pmatrix}</math> |
Revision as of 21:41, 21 March 2010
An electron is at rest in an oscillating magnetic field
where and are constants.
(a) Construct the Hamiltonian matrix for this system.
(b) The electron starts out (at t = 0) in the spin-up state with respect to the x-axis [that is,]. Determine at any subsequent time. Beware.' This is a time-dependent Hamiltonian, so you cannot get in the usual way from stationary states. Fortunately, in this case you can solve the time-dependent Schr/Sdinger equation directly.
(c) Find the probability of getting if you measure
(d) What is the minimum field required to force a complete flip in ?
Solution:
(a)
(b)
with
, so