Phy5646/CG coeff example1: Difference between revisions
Jump to navigation
Jump to search
(New page: == Find the CG coefficients == <math> 1\rangle : \dfrac{1}{2}\otimes 1 = \dfrac{3}{2}\oplus \dfrac{1}{2} </math> '''Answer''' The addition of <math>j_1=s=\frac{1}{2}</math> and <math>j...) |
|||
Line 28: | Line 28: | ||
or | or | ||
<math> J_{-} |\dfrac{1}{2}, 1, \dfrac{3}{2},\dfrac{3}{2}\rangle</math> = <math>\hbar \sqrt{3}|\dfrac{1}{2}, 1, \dfrac{3}{2},\dfrac{1}{2}\rangle</math> | <math> J_{-} |\dfrac{1}{2}, 1, \dfrac{3}{2},\dfrac{3}{2}\rangle</math> = <math>\hbar \sqrt{3}|\dfrac{1}{2}, 1, \dfrac{3}{2},\dfrac{1}{2}\rangle</math> | ||
Now <math> (J_{1-} +J_{2-})|\dfrac{1}{2}, 1, \dfrac{1}{2},1\rangle</math> = <math>\hbar \sqrt{\frac{1}{2}\left ( \frac{1}{2}+1 \right )-\frac{1}{2}\left ( \frac{1}{2}-1 \right )} |\dfrac{1}{2}, 1, -\dfrac{1}{2},1\rangle</math> + <math>\hbar \sqrt{1\left ( 1+1 \right )-1\left ( 1-1 \right )} |\dfrac{1}{2}, 1, \dfrac{1}{2},0\rangle</math> | |||
<math> (J_{1-} +J_{2-})|\dfrac{1}{2}, 1, \dfrac{1}{2},1\rangle</math> = <math>\hbar |\dfrac{1}{2}, 1, -\dfrac{1}{2},1\rangle</math> + <math>\hbar \sqrt{2} |\dfrac{1}{2}, 1, \dfrac{1}{2},0\rangle</math> |
Revision as of 03:54, 10 April 2010
Find the CG coefficients
Answer
The addition of and is encountered, for example, in the p-state of an electron. This state is characterised by orbital quantum number and spin quantum number . Obviously the possible values of magnetic quantum number for are and those for are . The allowed values of the total angular momentum are between hence . To calculate the relevant Clebsch–Gordan coefficients, we have to express the basis vectors in terms of
Eigenvectors associated with :
The state is given by,
=
Corresponding CG coefficient, = 1
Now can be found by
Applying to and
to and the equating the two results,
=
=
or =
Now = +
= +