Phy5646/Problem on Variational Method: Difference between revisions
No edit summary |
No edit summary |
||
Line 19: | Line 19: | ||
The extrema of the potential are the solutions of | The extrema of the potential are the solutions of | ||
<math>{V}'(x)=\frac{\lambda }{4}(4x^{3}+3ax^{2}-a^{2}x)=\frac{\lambda x}{4}(4x^{2}+3ax-a^{2})</math> | <math>{V}'(x)=\frac{\lambda }{4}(4x^{3}+3ax^{2}-a^{2}x)=\frac{\lambda x}{4}(4x^{2}+3ax-a^{2})=0</math> | ||
The second derivative of the potential is | |||
<math>{V}''=\frac{\lambda }{4}(12x^{2}+6ax-a^{2})</math> | <math>{V}''=\frac{\lambda }{4}(12x^{2}+6ax-a^{2})</math> | ||
We obtain a maximum at | |||
<math>x=0, {V}''(0)=-\frac{\lambda a^{2}}{4}< 0</math> | <math>x=0, {V}''(0)=-\frac{\lambda a^{2}}{4}< 0</math> | ||
and two minima at | |||
<math>x_{1}=-a,x_{2}=\frac{a}{4}</math> | <math>x_{1}=-a,x_{2}=\frac{a}{4}</math> | ||
with | |||
<math>{V}''(-a)=\frac{5\lambda a^{2}}{4}> 0,{V}''(\frac{a}{4})=\frac{5\lambda a^{2}}{16}> 0</math> | <math>{V}''(-a)=\frac{5\lambda a^{2}}{4}> 0,{V}''(\frac{a}{4})=\frac{5\lambda a^{2}}{16}> 0</math> | ||
Of these two minima, <math>x_{1}=-a</math> is the global minimum since it corresponds to the lower energy: | |||
<math>V(-a)= -\frac{\lambda a^{4}}{8}< V(\frac{a}{4})=-\frac{3\lambda a^{4}}{4^{5}}</math> | <math>V(-a)= -\frac{\lambda a^{4}}{8}< V(\frac{a}{4})=-\frac{3\lambda a^{4}}{4^{5}}</math> |
Revision as of 00:13, 11 April 2010
Consider the one-dimensional potential
(a) Find the points of classical equilibrium for a particle of mass m moving under the influence of this potential.
(b) Using the variational method, consider the trial wave function
where is the global minimum found in (a). Evaluate the expectation value of the energy for this wave function and find the equation defining the optimal values of the parameter β, in order to get an estimate of the ground-state energy. Now take a special, but reasonable, value of the coupling constant, , and obtain the corresponding estimate of the ground-state energy.
Solutions:-
(a) The classical equilibrium points are the minima of the potential, so that
The extrema of the potential are the solutions of
The second derivative of the potential is
We obtain a maximum at
and two minima at
with
Of these two minima, is the global minimum since it corresponds to the lower energy: