Phy5646/Problem on Variational Method: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 19: Line 19:
The extrema of the potential are the solutions of
The extrema of the potential are the solutions of


<math>{V}'(x)=\frac{\lambda }{4}(4x^{3}+3ax^{2}-a^{2}x)=\frac{\lambda x}{4}(4x^{2}+3ax-a^{2})</math>
<math>{V}'(x)=\frac{\lambda }{4}(4x^{3}+3ax^{2}-a^{2}x)=\frac{\lambda x}{4}(4x^{2}+3ax-a^{2})=0</math>
 
The second derivative of the potential is


<math>{V}''=\frac{\lambda }{4}(12x^{2}+6ax-a^{2})</math>
<math>{V}''=\frac{\lambda }{4}(12x^{2}+6ax-a^{2})</math>
We obtain a maximum at


<math>x=0, {V}''(0)=-\frac{\lambda a^{2}}{4}< 0</math>
<math>x=0, {V}''(0)=-\frac{\lambda a^{2}}{4}< 0</math>
and two minima at


<math>x_{1}=-a,x_{2}=\frac{a}{4}</math>
<math>x_{1}=-a,x_{2}=\frac{a}{4}</math>
with


<math>{V}''(-a)=\frac{5\lambda a^{2}}{4}> 0,{V}''(\frac{a}{4})=\frac{5\lambda a^{2}}{16}> 0</math>
<math>{V}''(-a)=\frac{5\lambda a^{2}}{4}> 0,{V}''(\frac{a}{4})=\frac{5\lambda a^{2}}{16}> 0</math>
Of these two minima, <math>x_{1}=-a</math> is the global minimum since it corresponds to the lower energy:


<math>V(-a)= -\frac{\lambda a^{4}}{8}< V(\frac{a}{4})=-\frac{3\lambda a^{4}}{4^{5}}</math>
<math>V(-a)= -\frac{\lambda a^{4}}{8}< V(\frac{a}{4})=-\frac{3\lambda a^{4}}{4^{5}}</math>

Revision as of 00:13, 11 April 2010

Consider the one-dimensional potential

(a) Find the points of classical equilibrium for a particle of mass m moving under the influence of this potential.

(b) Using the variational method, consider the trial wave function

where is the global minimum found in (a). Evaluate the expectation value of the energy for this wave function and find the equation defining the optimal values of the parameter β, in order to get an estimate of the ground-state energy. Now take a special, but reasonable, value of the coupling constant, , and obtain the corresponding estimate of the ground-state energy.

Solutions:-

(a) The classical equilibrium points are the minima of the potential, so that

The extrema of the potential are the solutions of

The second derivative of the potential is

We obtain a maximum at

and two minima at

with

Of these two minima, is the global minimum since it corresponds to the lower energy: