DetailedBalance: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
Consider a transition from <math>i \rightarrow f</math> between two states of the nucleus with spins <math>J_i </math> and <math>J_f</math>, respectively. The transition probability is proportional to the squared matrix element <math>|\langle J_f M_f| T_{\lambda \mu}| J_i M_i \rangle|^2</math> where <math>T_{\lambda \mu}</math> is a hermitian tensor operator of rank <math>\lambda</math> responsible for the process. Define the reduced transition probability | Consider a transition from <math>i \rightarrow f</math> between two states of the nucleus with spins <math>J_i </math> and <math>J_f</math>, respectively. The transition probability is proportional to the squared matrix element <math>|\langle J_f M_f| T_{\lambda \mu}| J_i M_i \rangle|^2</math> where <math>T_{\lambda \mu}</math> is a hermitian tensor operator of rank <math>\lambda</math> responsible for the process. Define the reduced transition probability | ||
<math>B(T_{\lambda}; i \rightarrow f)=\sum_{\mu M_f}|\langle J_f M_f| T_{\lambda \mu}| J_i M_i \rangle|^2</math> | <math>B(T_{\lambda}; i \rightarrow f)=\sum_{\mu M_f}|\langle J_f M_f| T_{\lambda \mu}| J_i M_i \rangle|^2</math> | ||
Line 5: | Line 6: | ||
a) Express <math>B(T_{\lambda}; i \rightarrow f)</math> in terms of the reduced matrix element | a) Express <math>B(T_{\lambda}; i \rightarrow f)</math> in terms of the reduced matrix element <math>(f|| T_{\lambda}|| i)</math> and show that it does not depend on the initial projection <math>M_i</math>. | ||
b) Establish the detailed balance between the reduced transition probabilities of the direct <math>i \rightarrow f</math>, and inverse <math>f \rightarrow i</math> processes. |
Revision as of 15:25, 12 April 2010
Consider a transition from between two states of the nucleus with spins and , respectively. The transition probability is proportional to the squared matrix element where is a hermitian tensor operator of rank responsible for the process. Define the reduced transition probability
as a sum of squared matrix elements over final projections and operator projections .
a) Express in terms of the reduced matrix element and show that it does not depend on the initial projection .
b) Establish the detailed balance between the reduced transition probabilities of the direct , and inverse processes.