Chapter4problem: Difference between revisions
Jump to navigation
Jump to search
MarkLingle (talk | contribs) No edit summary |
MarkLingle (talk | contribs) No edit summary |
||
Line 11: | Line 11: | ||
'''(b)''' Use <math> \Psi = B*sin(\frac{\pi*x}{a}) </math> on the interval (-a,a) to obtain a bound on the first excited state. Compare to the exact answer. | '''(b)''' Use <math> \Psi = B*sin(\frac{\pi*x}{a}) </math> on the interval (-a,a) to obtain a bound on the first excited state. Compare to the exact answer. | ||
'''Solution''' | |||
:<math> 1= \int |\Psi|^2 dx = \int\limits_{-a/2}^{a/2} cos^2(\frac{\pi*x}{a})\, dx = |A|^2*\frac{a}{2} \Rightarrow A=\sqrt(\frac{2}{a}) </math> | |||
<math> <T> = -\frac{\hbar^2}{2m} \int \Psi \frac{d^2 \Psi}{dx^2} = \frac{\hbar^2}{2m} (\frac{\pi}{a})^2\int\Psi^2dx = \frac{\pi^2\hbar^2}{2ma^2} </math> | |||
<math> <V> = .5m\omega^2\int x^2\Psi^2dx = .5m\omega^2\frac{2}{a}\int\limits_{-a/2}^{a/2}x^2cos^2(\frac{\pi x}{a}dx </math> | |||
<math> = \frac{m\omega^2}{a}(\frac{a}{\pi})^2\int\limits_{-\pi/2}^{\pi/2}y^2cos^2(y)dy </math> | |||
<math> = \frac{m\omega^2a^2}{\pi^3}[\frac{y^3}{6}+(\frac{y^2}{4}-\frac{1}{8})sin(2y)+\frac{ycos(2y)}{4}]_{-a/2}^{a/2} </math> | |||
<math> = \frac{m\omega^2a^2}{4\pi^2}(\frac{\pi^2}{6}-1) </math> | |||
<math> <H> = \frac{\pi^2 \hbar^2}{2ma^2} + \frac{m\omega^2a^2}{4\pi^2}(\frac{\pi^2}{6}-1)</math> | |||
:<math> \frac{\partial <H>}{\partial a} = -\frac{\pi^2 \hbar^2}{ma^3} + \frac{m\omega^2a}{2\pi^2}(\frac{\pi^2}{6}-1) =0</math> | |||
: <math> \Rightarrow a=\pi\sqrt{\frac{\hbar}{m\omega}}(\frac{2}{\pi^2/6-1})^{1/4} </math> | |||
:<math> <H>_{min}= \frac{\pi^2 \hbar^2}{2m\pi^2}\frac{m\omega}{\hbar}\sqrt{\frac{\pi^2/6-1}{2}} + \frac{m\omega^2}{4\pi^2}(\pi^2/6-1)\pi^2\frac{\hbar}{m\omega}\sqrt{\frac{2}{\pi^2/6-1}}</math> | |||
:<math> = .5\hbar\omega\sqrt{\pi^2/3-2} = .5\hbar\omega(1.136) > .5\hbar\omega </math> |
Revision as of 21:44, 15 April 2010
(Problem submitted by team 9, based on problem 7.11 of Griffiths)
(a) Using the wave function
obtain a bound on the ground state energy of the one-dimensional harmonic oscillator. Compare with the exact energy. Note: This trial wave function has a discontinuous derivative at .
(b) Use on the interval (-a,a) to obtain a bound on the first excited state. Compare to the exact answer.
Solution