Phy5646/hydrogen atom lifetime lifetime: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 37: Line 37:
This yeilds'
This yeilds'


<math> R= -\dfrac{2^(10)}{3^8}(\dfrac{E_{1}}{m c^2})^2 \dfrac{c}{a_o}= 6.27x10^8 1/s
<math> R= -\dfrac{2^(10)}{3^8}(\dfrac{E_{1}}{m c^2})^2 \dfrac{c}{a_o}= 6.27x10^8 1/s </math>
 
This gives a value fore the lifetime of the <math> \psi_{210} \psi_{21 \pm1}</math> states as <math> \tau= \dfrac{1}{r}= 1.60x10^-9s </math>

Revision as of 17:32, 18 April 2010

Excited Hydrogen Atom Lifetime.

We start with the wavefunctions of the ground and first excited state of the hydrogen atom.

The transistion rate is given by the Fermi Golden rule;

We must evaluate equations of the form

Exploiting the symmetry of the wavefunctions we find that the only non-zero element for the z compoent is,

Integrating over all space we find;

For the integrations over x and y we note that all the wavefunctions are even in these variables except for

Our ewuation for \omega is as follows;

This yeilds'

This gives a value fore the lifetime of the states as