Electron on Helium Surface: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
Line 30: Line 30:
(a) Solve the Schrödinger equation.
(a) Solve the Schrödinger equation.


<math> H = -\frac{h^2}{2m}\nabla^2 + V(z) </math>
<math> H = -\frac{\hbar^2}{2m}\nabla^2 + V(z) </math>


The Schrodinger equation for when <math>z>0</math> is:
The Schrödinger equation for when <math>z>0</math> is:


<math>  
<math>  
   \left[
   \left[
     \frac{h^2}{2m} \left(
     \frac{\hbar^2}{2m} \left(
     \frac{\partial ^2}{\partial x^2} +     
     \frac{\partial ^2}{\partial x^2} +     
     \frac{\partial ^2}{\partial y^2} +   
     \frac{\partial ^2}{\partial y^2} +   
Line 55: Line 55:
This corresponds to motion parallel to the helium surface.
This corresponds to motion parallel to the helium surface.


For z-component the Schordinger equation becomes:
For z-component the Schroedinger equation becomes:


<math>
<math>
   \left[  
   \left[  
     \frac{h^2}{2m}\frac{\partial ^2}{\partial z^2} - \frac{Q^2e^2}{z}  
     \frac{\hbar^2}{2m}\frac{\partial ^2}{\partial z^2} -  
    \frac{Q^2e^2}{z}  
   \right] Z(z) =
   \right] Z(z) =
</math>
</math>
Line 82: Line 83:
The total wave function and energies are:
The total wave function and energies are:


<math> \psi = Ae^{i(k_x x + k_y y)}zR_n0(z) </math>
<math> \psi = Ae^{i(k_x x + k_y y)}zR_{n0}(z) </math>


<math>  
<math>  

Revision as of 10:59, 20 April 2010

An electron close to the surface of liquid helium experiences an attractive force due to the electrostatic polarization of the helium and a repulsive force due to the exclusion principle(hard core). To a reasonable approximation for the potential when helium fills the space where :

Note: the potential is infinite when because the cannot penetrate the helium surface.


(a) Solve the Schrödinger equation. Find the Eingenenergies and Eigenvalues.

(b) An electric field is turned on at t=0 which produces the perturbation:

If the electron is initially in its ground state, find the probability makes a transition to its first excited state for times .

Solution...

(a) Solve the Schrödinger equation.

The Schrödinger equation for when is:

Using separation of variables:

For X and Y we get place waves.

This corresponds to motion parallel to the helium surface.

For z-component the Schroedinger equation becomes:

This has the same form as the same form as the hydrogin atom with l=0 (s-wave). Since similar equations have similar answers, the solution to the z-component is:

where


The total wave function and energies are:

where n = 1,2,... is the quantum number for the z-direction and the bohr radius has become