Electron on Helium Surface: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
Line 100: Line 100:
The electric field introduces a perturbation to the hamiltonian:
The electric field introduces a perturbation to the hamiltonian:


<math> H^'(t>0) = E_0ze^{t/\tau} </math>
<math> V_t = eE_0ze^{t/\tau} </math>


From expression 2.1.10 in [http://wiki.physics.fsu.edu/wiki/index.php/Phy5646#Formalism Time Dependent Perturbation] Section of the PHY5646 page:
From expression 2.1.10 in [http://wiki.physics.fsu.edu/wiki/index.php/Phy5646#Formalism Time Dependent Perturbation] Section of the PHY5646 page:


<math>\begin{align}
<math>\begin{align}
   P_{1 \rightarrow 2}(t \rightarrow \infty)  
   P_{1 \rightarrow 2}(t \rightarrow \infty)  
    &= |\langle n|\psi(t)\rangle|^2  
 
   \\&= \left|\frac{1}{i\hbar}\int_{0}^{\infty}dt'   
  &= |\langle n|\psi(t)\rangle|^2  
      e^{\frac{i}{\hbar}(E_2 - E_1)t'}
   \\
      \langle \psi_{n=2}|V_{t'}| \psi_{n=1}\rangle\right|^2
  &= \left|\frac{1}{i\hbar}\int_{0}^{\infty}dt'   
   \\&=
    e^{\frac{i}{\hbar}(E_2 - E_1)t'}
    \langle \psi_{n=2}|V_{t'}| \psi_{n=1}\rangle\right|^2
   \\
  &= \frac{e^2E_0^2}{\hbar^2}
    \frac{1}{\omega_{21}^2 + \frac{1}{\tau}}
    \left| \langle \psi_{n=2}(z) | z | \psi_{n=1}(z) \rangle \right|^2
\end{align}
\\ \\
\begin{align}
 
  \langle \psi_{n=2}(z) | z | \psi_{n=1}(z) \rangle \right
 
  &=
 
 
\end{align}</math>
\end{align}</math>

Revision as of 15:11, 20 April 2010

An electron close to the surface of liquid helium experiences an attractive force due to the electrostatic polarization of the helium and a repulsive force due to the exclusion principle(hard core). To a reasonable approximation for the potential when helium fills the space where :

Note: the potential is infinite when because the cannot penetrate the helium surface.


(a) Solve the Schrödinger equation. Find the Eingenenergies and Eigenvalues.

(b) An electric field is turned on at t=0 which produces the perturbation:

If the electron is initially in its ground state, find the probability makes a transition to its first excited state for times .

Solution...

(a) Solve the Schrödinger equation.

The Schrödinger equation for when is:

Using separation of variables:

For X and Y we get place waves.

This corresponds to motion parallel to the helium surface.

For z-component the Schroedinger equation becomes:

This has the same form as the hydrogin atom with l=0 (s-wave). Since similar equations have similar solutions, the solution to the z-component is:

where


The total wave function and energies are:

where n = 1,2,... is the quantum number for the z-direction and the bohr radius has become


(b) Turn on electric field at t=0.

The electric field introduces a perturbation to the hamiltonian:

From expression 2.1.10 in Time Dependent Perturbation Section of the PHY5646 page:

Failed to parse (syntax error): {\displaystyle \begin{align} P_{1 \rightarrow 2}(t \rightarrow \infty) &= |\langle n|\psi(t)\rangle|^2 \\ &= \left|\frac{1}{i\hbar}\int_{0}^{\infty}dt' e^{\frac{i}{\hbar}(E_2 - E_1)t'} \langle \psi_{n=2}|V_{t'}| \psi_{n=1}\rangle\right|^2 \\ &= \frac{e^2E_0^2}{\hbar^2} \frac{1}{\omega_{21}^2 + \frac{1}{\tau}} \left| \langle \psi_{n=2}(z) | z | \psi_{n=1}(z) \rangle \right|^2 \end{align} \\ \\ \begin{align} \langle \psi_{n=2}(z) | z | \psi_{n=1}(z) \rangle \right &= \end{align}}