Phy5646/An Example of spontaneous emission calculation: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 2: Line 2:


This example was taken from "Theory and Problems of Quantum Mechanics", Yoaf Peleg, <i>et al</i>, p. 298.
This example was taken from "Theory and Problems of Quantum Mechanics", Yoaf Peleg, <i>et al</i>, p. 298.
-----


'''Problem:'''  
'''Problem:'''  
Find the transition rate of spontaneous emission for a hydrogen atom in the first excited state.
Find the transition rate of spontaneous emission for a hydrogen atom in the first excited state.


-----


'''Solution:'''
'''Solution:'''
Line 11: Line 14:


<math>
<math>
\Gamma_{1s2p} = \frac{4}{3}\frac{e^{2}\omega^{3}_{21}}{\hbar c^{3}}|\langle 100|\mathbf{r}|21m'\rangle|^{2}
\Gamma_{2p\rightarrow 1s} = \frac{4}{3}\frac{e^{2}\omega^{3}_{21}}{\hbar c^{3}}\left|\langle 100|\vec{r}|21m'\rangle\right|^{2}
</math>
</math>


where <math>|21m'\rangle</math> is one of the three <i>2p</i> states. In particular, for the hydrogen atom in the first excited state,
where <math>|21m'\rangle</math> is one of the three <math>2p \!</math> states. In particular, for the hydrogen atom in the first excited state,


<math>
<math>
|\langle 100|\mathbf{r}|21m'\rangle|^{2} = \frac{1}{3}|\langle 10|\mathbf{r}|21m\rangle|^{2}=\frac{5}{9}a_{0}^{2}
\left|\langle 100|\vec{r}|21m'\rangle\right|^{2} = \frac{1}{3}|\langle 100\left|\vec{r}|21m\rangle\right|^{2}=\frac{5}{9}a_{0}^{2}
</math>
</math>


Line 23: Line 26:


<math>
<math>
\Gamma_{1s2p} = \frac{20}{27}\frac{e^{2}\omega^{3}_{21}}{\hbar c^{3}}a_{0}^{2}=\frac{20}{27}\alpha \frac{\omega_{21}^{3}}{c^{2}}a_{0}^{2}=\frac{20}{27}\frac{\omega_{21}^{3}}{c^{4}}\frac{\hbar^{2}}{m^{2}\alpha}
\Gamma_{2p\rightarrow 1s} = \frac{20}{27}\frac{e^{2}\omega^{3}_{21}}{\hbar c^{3}}a_{0}^{2}=\frac{20}{27}\alpha \frac{\omega_{21}^{3}}{c^{2}}a_{0}^{2}=\frac{20}{27}\frac{\omega_{21}^{3}}{c^{4}}\frac{\hbar^{2}}{m^{2}\alpha}
</math>
</math>


Line 36: Line 39:


<math>
<math>
\Gamma_{1s2p} = \frac{20}{8^{3}}\alpha^{5}\frac{mc^{2}}{\hbar}=\frac{5}{48}\alpha^{3}\omega_{21}\cong 6.25 \times 10^{-8}sec^{-1}
\Gamma_{2p \rightarrow 1s} = \frac{20}{8^{3}}\alpha^{5}\frac{mc^{2}}{\hbar}=\frac{5}{48}\alpha^{3}\omega_{21}\cong 6.25 \times 10^{-8}sec^{-1}
</math>
</math>

Latest revision as of 21:51, 24 April 2010

(Submitted by Team 1)

This example was taken from "Theory and Problems of Quantum Mechanics", Yoaf Peleg, et al, p. 298.


Problem: Find the transition rate of spontaneous emission for a hydrogen atom in the first excited state.


Solution: The transition rate for is given by

where is one of the three states. In particular, for the hydrogen atom in the first excited state,

where is the Bohr radius. Therefore,


where is the fine structure constant. However,

Hence,