Phy5646/Non-degenerate Perturbation Theory - Problem 3: Difference between revisions
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
This example taken from "Quantum Physics" 3rd ed., Stephen Gasiorowicz, p. 177. | This example taken from "Quantum Physics" 3rd ed., Stephen Gasiorowicz, p. 177. | ||
----- | |||
'''Problem:''' | '''Problem:''' | ||
A charged particle in a simple harmonic oscillator, for which <math>{H}_0 = \frac{p^{2}}{2m} + \frac{mw^{2}}{2}</math>, | A charged particle in a simple harmonic oscillator, for which <math>{H}_0 = \frac{p^{2}}{2m} + \frac{mw^{2}}{2}</math>, | ||
subject to a constant electric field so that <math>{H}^' = q\mathcal{E} x</math>. Calculate the energy shift | subject to a constant electric field so that <math>{H}^' = q\mathcal{E} x</math>. Calculate the energy shift | ||
for the <math>n^{th}</math> level to first and second order in <math>(q\mathcal{E})</math>. | for the <math>n^{th}\!</math> level to first and second order in <math>(q\mathcal{E})</math>. | ||
(Hint: Use the operators <math>a</math> and <math>a^{\dagger}</math> for the evaluation of the matrix elements). | (Hint: Use the operators <math>a</math> and <math>a^{\dagger}</math> for the evaluation of the matrix elements). | ||
----- | |||
'''Solution:''' | '''Solution:''' | ||
(a) To first order we need to calculate <math>{H}^' = q\mathcal{E}\langle n|x|n\rangle</math>. It is easy to show that <math>\langle n|x|n\rangle = 0</math>. One way is to use the relation | (a) To first order we need to calculate <math>{H}^' = q\mathcal{E}\langle n|x|n\rangle</math>. It is easy to show that <math>\langle n|x|n\rangle = 0</math>. One way is to use the relation | ||
:<math> | :<math> | ||
x=\sqrt{\frac{\hbar}{2m\omega}}(a+a^{\dagger}) | x=\sqrt{\frac{\hbar}{2m\omega}}\left(a+a^{\dagger}\right) | ||
</math> | </math> | ||
and since <math>A|n\rangle = \sqrt{n}|n-1\rangle</math> and <math>A^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle</math> we see that <math>\langle n|x|n\rangle = 0</math>. | and since <math>A|n\rangle = \sqrt{n}|n-1\rangle</math> and <math>A^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle</math> we see that <math>\langle n|x|n\rangle = 0</math>. | ||
(b) The second-order term involves | (b) The second-order term involves | ||
:<math> | :<math> | ||
q^{2}\mathcal{E}^{2}\sum_{k\neq n}\frac{|\langle k|x|n\rangle|^{2}}{\hbar \omega (n-k)}= \frac{q^{2}\mathcal{E}^{2}}{\hbar\omega}\frac{\hbar}{2m\omega}\sum_{k\neq n} \frac{|\langle k|a+a^{\dagger}|n\rangle|^{2}}{n-k} | q^{2}\mathcal{E}^{2}\sum_{k\neq n}\frac{|\langle k|x|n\rangle|^{2}}{\hbar \omega (n-k)}= \frac{q^{2}\mathcal{E}^{2}}{\hbar\omega}\frac{\hbar}{2m\omega}\sum_{k\neq n} \frac{\left|\left\langle k\left|a+a^{\dagger}\right|n\right\rangle\right|^{2}}{n-k} | ||
</math> | </math> | ||
The only contributions come from <math>k=n-1 \!</math> and <math>k=n+1 \!</math>, so that | |||
The only contributions come from <math>k=n-1</math> and <math>k=n+1</math>, so that | |||
:<math> | :<math> | ||
\sum_{k\neq n} \frac{|\langle k|a+a^{\dagger}|n\rangle|^{2}}{n-k}=|\sqrt{n}|^{2}-|\sqrt{n+1}|^{2}=-1 | \sum_{k\neq n} \frac{\left|\left\langle k\left|a+a^{\dagger}\right|n\right\rangle\right|^{2}}{n-k}=\left|\sqrt{n}\right|^{2}-\left|\sqrt{n+1}\right|^{2}=-1 | ||
</math> | </math> | ||
and thus | and thus | ||
:<math> | :<math> | ||
E_{n}^{(2)}=\frac{ | E_{n}^{(2)}=-\frac{q^{2}\mathcal{E}^{2}}{2m\omega} | ||
</math> | </math> | ||
The result is independent of <math>n\!</math>. We can check for its correctness by noting that the total potential | |||
The result is independent of <math>n</math>. We can check for its correctness by noting that the total potential | |||
energy is | energy is | ||
:<math> | :<math> | ||
\frac{1}{2}m\omega^{2}x^{2}+q\mathcal{E}x=\frac{1}{2}m\omega^{2}(x^{2}+\frac{2q\mathcal{E}}{m\omega^{2}}x)=\frac{1}{2}m\omega^{2}(x+\frac{q\mathcal{E}}{m\omega^{2}})^{2}-\frac{q^{2}\mathcal{E}^{2}}{2m\omega^{2}} | \frac{1}{2}m\omega^{2}x^{2}+q\mathcal{E}x=\frac{1}{2}m\omega^{2}\left(x^{2}+\frac{2q\mathcal{E}}{m\omega^{2}}x\right)=\frac{1}{2}m\omega^{2}\left(x+\frac{q\mathcal{E}}{m\omega^{2}}\right)^{2}-\frac{q^{2}\mathcal{E}^{2}}{2m\omega^{2}} | ||
</math> | </math> | ||
Thus the perturbation shifts the center of the potential by <math> -\frac{q\mathcal{E}}{m\omega^{2}}</math> and lowers the energy by | Thus the perturbation shifts the center of the potential by <math> -\frac{q\mathcal{E}}{m\omega^{2}}</math> and lowers the energy by | ||
<math>\frac{q^{2}\mathcal{E}^{2}}{2m\omega^{2}}</math>, which agrees with our second-order result. | <math>\frac{q^{2}\mathcal{E}^{2}}{2m\omega^{2}}</math>, which agrees with our second-order result. |
Latest revision as of 22:13, 24 April 2010
(Submitted by Team 1)
This example taken from "Quantum Physics" 3rd ed., Stephen Gasiorowicz, p. 177.
Problem:
A charged particle in a simple harmonic oscillator, for which , subject to a constant electric field so that . Calculate the energy shift for the level to first and second order in . (Hint: Use the operators and for the evaluation of the matrix elements).
Solution:
(a) To first order we need to calculate . It is easy to show that . One way is to use the relation
and since and we see that .
(b) The second-order term involves
The only contributions come from and , so that
and thus
The result is independent of . We can check for its correctness by noting that the total potential energy is
Thus the perturbation shifts the center of the potential by and lowers the energy by , which agrees with our second-order result.