Phy5646/AddAngularMomentumProb: Difference between revisions
Jump to navigation
Jump to search
PaulDragulin (talk | contribs) No edit summary |
PaulDragulin (talk | contribs) No edit summary |
||
Line 13: | Line 13: | ||
<math>\ +\hbar^2\sqrt{\frac{1}{2} \left(\frac{1}{2}+1 \right)-m_1 \left(m_1-1 \right)}\sqrt{\frac{1}{2} \left(\frac{1}{2}+1 \right)-m_2 \left(m_1+1 \right)}|m_1-1;m_2+1\rangle </math> | <math>\ +\hbar^2\sqrt{\frac{1}{2} \left(\frac{1}{2}+1 \right)-m_1 \left(m_1-1 \right)}\sqrt{\frac{1}{2} \left(\frac{1}{2}+1 \right)-m_2 \left(m_1+1 \right)}|m_1-1;m_2+1\rangle </math> | ||
<math>\ \Rightarrow S^2|m_1m_2\rangle = \hbar^2 \left(\left(\frac{3}{2}+2m_1m_2\right)|m_1m_2\rangle+\sqrt{\left(\frac{3}{2}-m_1(m_1+1)\right)\left(\frac{3}{2}-m_2(m_2-1)\right)}|m_1+1;m_2-1\rangle+\sqrt{\left(\frac{3}{2}-m_1(m_1-1)\right)\left(\frac{3}{2}-m_2(m_2+1)\right)}|m_1-1;m_2+1\rangle\right)</math> | <math>\ \Rightarrow S^2|m_1m_2\rangle = \hbar^2 \left(\left(\frac{3}{2}+2m_1m_2\right)|m_1m_2\rangle+\sqrt{\left(\frac{3}{2}-m_1(m_1+1)\right)\left(\frac{3}{2}-m_2(m_2-1)\right)}|m_1+1;m_2-1\rangle+\sqrt{\left(\frac{3}{2}-m_1(m_1-1)\right)\left(\frac{3}{2}-m_2(m_2+1)\right)}|m_1-1;m_2+1\rangle\right)</math> | ||
3.) Now acting on the left with <math>\ \langle m_1'm_2'| </math>: | |||
<math>\ \langle m_1'm_2'|S^2|m_1m_2\rangle = \hbar^2 \left(\left(\frac{3}{2}+2m_1m_2\right)\delta_{m_1'm_1}\delta_{m_2'm_2}+\sqrt{\left(\frac{3}{2}-m_1(m_1+1)\right)\left(\frac{3}{2}-m_2(m_2-1)\right)}\delta_{m_1'm_1+1}\delta_{m_2'm_2-1}+\sqrt{\left(\frac{3}{2}-m_1(m_1-1)\right)\left(\frac{3}{2}-m_2(m_2+1)\right)}\delta_{m_1'm_1-1}\delta_{m_2'm_2+1}\right) | |||
</math> | |||
3.) Now plug in appropriate values of <math>\ m_1 </math> and <math>\ m_2 </math>: | 3.) Now plug in appropriate values of <math>\ m_1 </math> and <math>\ m_2 </math>: | ||
Line 18: | Line 35: | ||
<math>\ S^2 |1/2;1/2\rangle = \hbar^2\left(\left(\frac{3}{2}+2\cdot\frac{1}{4}\right)|1/2;1/2\rangle + 0 + 0 \right) = 2\hbar^2|1/2;1/2\rangle</math> where <math>\ |3/2;-1/2\rangle = |-1/2;3/2\rangle = 0</math>. | <math>\ S^2 |1/2;1/2\rangle = \hbar^2\left(\left(\frac{3}{2}+2\cdot\frac{1}{4}\right)|1/2;1/2\rangle + 0 + 0 \right) = 2\hbar^2|1/2;1/2\rangle</math> where <math>\ |3/2;-1/2\rangle = |-1/2;3/2\rangle = 0</math>. | ||
Similarly, <math>\ S^2 | Similarly, <math>\ S^2 \langle-1/2;-1/2| = | ||
Revision as of 22:07, 25 April 2010
Based on exercise 15.1.1. from Principles of Quantum Mechanics, 2nd ed. by Shankar:
Express as a matrix for two spin-1/2 particles in the direct product basis.
1.) First express in terms of , , , , and :
2.) Then act with this on direct product state :
3.) Now acting on the left with :
3.) Now plug in appropriate values of and :
where .
Similarly,