Main Page/CG coefficients of 3 spin half particles: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 36: Line 36:
Following the same method-applying <math>\hat{J_{-}}</math> on <math>(\hat{J_{1-}}+\hat{J_{2-}}+\hat{J_{3-}})</math> on the right hand side of above equation and then equating the two results-we find
Following the same method-applying <math>\hat{J_{-}}</math> on <math>(\hat{J_{1-}}+\hat{J_{2-}}+\hat{J_{3-}})</math> on the right hand side of above equation and then equating the two results-we find


<math>math>|1,\frac{3}{2},-\frac{1}{2}>=\frac{1}{\sqrt{3}}\left ( |j_{1},j_{2},j_{3};+,-,->+|j_{1},j_{2},j_{3};-,+,->+|j_{1},j_{2},j_{3};-,-,+> \right )</math></math>
<math>|1,\frac{3}{2},-\frac{1}{2}>=\frac{1}{\sqrt{3}}\left ( |j_{1},j_{2},j_{3};+,-,->+|j_{1},j_{2},j_{3};-,+,->+|j_{1},j_{2},j_{3};-,-,+> \right )</math>
 
 
Subspace--j=1/2
 
We can write <math>|0,\frac{1}{2},\frac{1}{2}></math> as a linear combination of <math>|j_{1},j_{2},j_{3};+,+,-> </math> and <math>|j_{1},j_{2},j_{3};-,+,+> </math>
 
<math>|0,\frac{1}{2},\frac{1}{2}>=\alpha |j_{1},j_{2},j_{3};+,+,-> +\beta |j_{1},j_{2},j_{3};-,+,+> </math>
 
Since <math>|0,\frac{1}{2},\frac{1}{2}></math> is normalized, while <math>(\hat{J_{1}}+\hat{J_{2}}+\hat{J_{3}})|j_{1},j_{2},j_{3};+,+,-></math> and <math>(\hat{J_{1}}+\hat{J_{2}}+\hat{J_{3}})|j_{1},j_{2},j_{3};-,+,+></math>, and since Clebsch-Gordan coefficients, such as <math>\alpha </math> and <math>\beta</math>, are real numbers, above equation yields
 
<math>\alpha ^{2}+\beta ^{2}=1</math>
 
On the other hand, since <math><1,\frac{3}{2},\frac{1}{2}|0,\frac{1}{2},\frac{1}{2}>=0</math>, hence we get,
 
<math>\frac{1}{\sqrt{3}}(\alpha +\beta )</math>          <math>\Rightarrow </math>          <math>\alpha =-\beta </math>
 
A substitution of <math>\alpha =-\beta </math> gives <math>\alpha =-\beta =\frac{1}{\sqrt{2}}</math>

Revision as of 20:37, 26 April 2010

Problem

(a) Find the total spin of a syatem of three spin Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} particles and derive the corresponding Clebsch-Gordan Coefficients.

(b) Consider a system of three nonidentical spin Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} particles whose Hamiltonian is given by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{H}=-\epsilon _{0}(\vec{S}_{1}.\vec{S}_{3}+\vec{S}_{2}.\vec{S}_{3})/\hbar^{2}} . Find the system's energy levels and their degeneracies.

Solution:-

(a) To add Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j_{1}=\frac{1}{2}} ,Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j_{2}=\frac{1}{2}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j_{3}=\frac{1}{2}} , we begin by coupling Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j_{1}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j_{2}} to form Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j_{12}=j_{1}+j_{2}} where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |j_{1}-j_{2}|\leq j_{12}\leq |j_{1}+j_{2}|} , hence Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j_{12}=0,1} . Then we add jFailed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle _{12}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j_{3}} ; this leads to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |j_{12}-j_{3}|\leq j\leq |j_{12}+j_{3}|}

We are going to denote the joint eigenstates of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{J_{1}}^{2}} ,Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{J_{2}}^{2}} ,Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{J_{3}}^{2}} ,Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{J_{12}}^{2}} ,Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{J}^{2}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_{z}} by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |j_{12},j,m> } and the joint eigenstates of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{J_{1}}^{2}} ,Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{J_{2}}^{2}} ,Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{J_{3}}^{2}} ,Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{J_{1_{z}}}^{2}} ,Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{J_{2_{z}}}^{2}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{J_{3_{z}}}^{2}} by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |j_{1},J_{2},j_{3};m_{1},m_{2},m_{3}>} ; since Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j_{1}=j_{2}=j_{3}=\frac{1}{2}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m_{1}=\pm \frac{1}{2}} ,Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m_{2}=\pm \frac{1}{2}} ,Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m_{3}=\pm \frac{1}{2}} ,we will be using throughout this problem the lighter notation Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |j_{1},j_{2},j_{3};\pm ,\pm,\pm> } to abbreviate Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\frac{1}{2},\frac{1}{2},\frac{1}{2};\pm \frac{1}{2},\pm \frac{1}{2},\pm \frac{1}{2}> }

In total there are eight states Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |j_{12}, j, m>} since Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (2j_{1}+1)(2j_{2}+1)(2j_{3}+1)=8} . Four of these correspond to the subspace Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j=\frac{3}{2}:|1,\frac{3}{2},\frac{3}{2}>,|1,\frac{3}{2},\frac{1}{2}>,|1,\frac{3}{2},-\frac{1}{2}>,|1,\frac{3}{2},-\frac{3}{2}>} . The remaining four belong to the subspace Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j=\frac{1}{2}:|0,\frac{1}{2},\frac{1}{2}>,|0,\frac{1}{2},-\frac{1}{2}>,|1,\frac{1}{2},\frac{1}{2}>,|1,\frac{1}{2},-\frac{1}{2}>} . To construct the states Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |j_{12},j,m> } in terms of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |j_{1},j_{2},j_{3};\pm,\pm,\pm} , we are going to consider the two subspaces Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j=\frac{3}{2}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j=\frac{1}{2}} separately.


Subspace Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j=\frac{3}{2}}

First, the states Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |1,\frac{3}{2},\frac{3}{2}>} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |1,\frac{3}{2},-\frac{3}{2}>} are clearly given by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |1,\frac{3}{2},\frac{3}{2}>=|j_{1},j_{2},j_{3};+,+,+> } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |1,\frac{3}{2},-\frac{3}{2}>=|j_{1},j_{2},j_{3};-,-,-> }

To obtain Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |1,\frac{3}{2},\frac{1}{2}>} , we need to apply, on the one hand, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{J_{-}}} on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |1,\frac{3}{2},\frac{3}{2}>}

Failed to parse (syntax error): {\displaystyle \\hat{J_{-}}|1,\frac{3}{2},\frac{3}{2}>=\hbar\sqrt{\frac{3}{2}\left ( \frac{3}{2}+1 \right )-\frac{3}{2}\left ( \frac{3}{2}-1 \right )}|1,\frac{3}{2},\frac{3}{2}>=\hbar\sqrt{3}|1,\frac{3}{2},\frac{1}{2}>}

and, on the other hand, apply on

This yields

Since . Equating above equations, we get

Following the same method-applying on on the right hand side of above equation and then equating the two results-we find


Subspace--j=1/2

We can write as a linear combination of and

Since is normalized, while and , and since Clebsch-Gordan coefficients, such as and , are real numbers, above equation yields

On the other hand, since , hence we get,

A substitution of gives