|
|
| Line 61: |
Line 61: |
| <math>\ \Rightarrow (S_1^2 + S_2^2 + 2S_{1z}S_{2z}+S_{1+}S_{2-}+S_{1-}S_{2+})(\alpha|+-\rangle + \beta|-+\rangle) = \lambda(\alpha|+-\rangle + \beta|-+\rangle) </math> | | <math>\ \Rightarrow (S_1^2 + S_2^2 + 2S_{1z}S_{2z}+S_{1+}S_{2-}+S_{1-}S_{2+})(\alpha|+-\rangle + \beta|-+\rangle) = \lambda(\alpha|+-\rangle + \beta|-+\rangle) </math> |
|
| |
|
| <math>\ \Rightarrow \hbar^2\alpha\left(\left(\frac{3}{4} + \frac{3}{4} + 2\left(\frac{1}{2}\cdot\frac{-1}{2}\right)\right)|+-\rangle + 0 + |-+\rangle\right) + \hbar^2\beta\left(\left(\frac{3}{4} + \frac{3}{4} + 2\left(\frac{-1}{2}\cdot\frac{1}{2}\right)\right)|-+\rangle + |+-\rangle + 0\right) = \lambda(\alpha|+-\rangle + \beta|-+\rangle) </math> | | <math>\ \Rightarrow \hbar^2\alpha\left(\left(\frac{3}{4} + \frac{3}{4} + 2\left(\frac{1}{2}\cdot\frac{-1}{2}\right)\right)|+-\rangle + 0 + \sqrt{\left(\frac{3}{4}+\frac{1}{4}\right)\left(\frac{3}{4}+\frac{1}{4}\right)}|-+\rangle\right) + \hbar^2\beta\left(\left(\frac{3}{4} + \frac{3}{4} + 2\left(\frac{-1}{2}\cdot\frac{1}{2}\right)\right)|-+\rangle + \sqrt{\left(\frac{3}{4}+\frac{1}{4}\right)\left(\frac{3}{4}+\frac{1}{4}\right)}|+-\rangle + 0\right) = \lambda(\alpha|+-\rangle + \beta|-+\rangle) </math> |
| | |
| | <math>\ \Rightarrow\hbar^2\alpha\left(|+-\rangle + |-+\rangle\right) + \hbar^2\beta\left(|-+\rangle + |+-\rangle)\right) = \lambda(\alpha|+-\rangle + \beta|-+\rangle) </math> |
| | |
| | <math>\ \Rightarrow\hbar^2\left(\alpha+\beta\right)\cdot\left(|+-\rangle + |-+\rangle\right) = \lambda(\alpha|+-\rangle + \beta|-+\rangle) </math> |
Based on exercise 15.1.1. from Principles of Quantum Mechanics, 2nd ed. by Shankar:
Express
as a matrix for two spin-1/2 particles in the direct product basis.
1.) First express
in terms of
,
,
,
,
and
:
2.) Then act with this on direct product state
:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ +\hbar^2\sqrt{\frac{1}{2} \left(\frac{1}{2}+1 \right)-m_1 \left(m_1-1 \right)}\sqrt{\frac{1}{2} \left(\frac{1}{2}+1 \right)-m_2 \left(m_1+1 \right)}|m_1-1;m_2+1\rangle }
3.) Now acting on the left with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \langle m_1'm_2'| }
:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Rightarrow \langle m_1'm_2'|S^2|m_1m_2\rangle = \hbar^2 \left(\left(\frac{3}{2}+2m_1m_2\right)\delta_{m_1'm_1}\delta_{m_2'm_2}+\sqrt{\left(\frac{3}{4}-m_1m_1'\right)\left(\frac{3}{4}-m_2m_2'\right)}\left(\delta_{m_1'm_1+1}\delta_{m_2'm_2-1}+\delta_{m_1'm_1-1}\delta_{m_2'm_2+1}\right)\right) }
3.) Now plugging in appropriate values of
and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ m_2' }
:
All that must be done now is arranging the matrix elements in matrix form. The ++ state corresponds to the left (top) while the -- state is on the right (bottom):
We can clearly see that all of the direct product states do not diagonalize
. A linear combination of the two problem states, +- and +-, should solve the problem however: