|
|
Line 61: |
Line 61: |
| <math>\ \Rightarrow (S_1^2 + S_2^2 + 2S_{1z}S_{2z}+S_{1+}S_{2-}+S_{1-}S_{2+})(\alpha|+-\rangle + \beta|-+\rangle) = \lambda(\alpha|+-\rangle + \beta|-+\rangle) </math> | | <math>\ \Rightarrow (S_1^2 + S_2^2 + 2S_{1z}S_{2z}+S_{1+}S_{2-}+S_{1-}S_{2+})(\alpha|+-\rangle + \beta|-+\rangle) = \lambda(\alpha|+-\rangle + \beta|-+\rangle) </math> |
|
| |
|
| <math>\ \Rightarrow \hbar^2\alpha\left(\left(\frac{3}{4} + \frac{3}{4} + 2\left(\frac{1}{2}\cdot\frac{-1}{2}\right)\right)|+-\rangle + 0 + |-+\rangle\right) + \hbar^2\beta\left(\left(\frac{3}{4} + \frac{3}{4} + 2\left(\frac{-1}{2}\cdot\frac{1}{2}\right)\right)|-+\rangle + |+-\rangle + 0\right) = \lambda(\alpha|+-\rangle + \beta|-+\rangle) </math> | | <math>\ \Rightarrow \hbar^2\alpha\left(\left(\frac{3}{4} + \frac{3}{4} + 2\left(\frac{1}{2}\cdot\frac{-1}{2}\right)\right)|+-\rangle + 0 + \sqrt{\left(\frac{3}{4}+\frac{1}{4}\right)\left(\frac{3}{4}+\frac{1}{4}\right)}|-+\rangle\right) + \hbar^2\beta\left(\left(\frac{3}{4} + \frac{3}{4} + 2\left(\frac{-1}{2}\cdot\frac{1}{2}\right)\right)|-+\rangle + \sqrt{\left(\frac{3}{4}+\frac{1}{4}\right)\left(\frac{3}{4}+\frac{1}{4}\right)}|+-\rangle + 0\right) = \lambda(\alpha|+-\rangle + \beta|-+\rangle) </math> |
| | |
| | <math>\ \Rightarrow\hbar^2\alpha\left(|+-\rangle + |-+\rangle\right) + \hbar^2\beta\left(|-+\rangle + |+-\rangle)\right) = \lambda(\alpha|+-\rangle + \beta|-+\rangle) </math> |
| | |
| | <math>\ \Rightarrow\hbar^2\left(\alpha+\beta\right)\cdot\left(|+-\rangle + |-+\rangle\right) = \lambda(\alpha|+-\rangle + \beta|-+\rangle) </math> |
Based on exercise 15.1.1. from Principles of Quantum Mechanics, 2nd ed. by Shankar:
Express
as a matrix for two spin-1/2 particles in the direct product basis.
1.) First express
in terms of
,
,
,
,
and
:
2.) Then act with this on direct product state
:
3.) Now acting on the left with
:
3.) Now plugging in appropriate values of
and
:
All that must be done now is arranging the matrix elements in matrix form. The ++ state corresponds to the left (top) while the -- state is on the right (bottom):
We can clearly see that all of the direct product states do not diagonalize
. A linear combination of the two problem states, +- and +-, should solve the problem however: