Talk:Phy5646: Difference between revisions
Jump to navigation
Jump to search
(New page: Question: A monoatomic atom undergo spontaneous emission. It changes from an excited state <math>|e\rangle</math> with <math>l=0</math> to an intermediate state <math>|i\rangle</math> with...) |
No edit summary |
||
Line 1: | Line 1: | ||
Question: A monoatomic atom undergo spontaneous emission. It changes from an excited state <math>|e\rangle</math> with <math>l=0</math> to an intermediate state <math>|i\rangle</math> with <math>l=1</math> emitting a photon with wave vector <math>\mathbf{k}</math>, and then to the ground state <math>|g\rangle</math> with <math>l=0</math> emitting a photon with wave vector <math>\mathbf{k'}</math>. Find the probability that the angle between the two wavevectors to be <math> \ | Question: A monoatomic atom undergo spontaneous emission. It changes from an excited state <math>|e\rangle</math> with <math>l=0</math> to an intermediate state <math>|i\rangle</math> with <math>l=1</math> emitting a photon with wave vector <math>\mathbf{k}</math>, and then to the ground state <math>|g\rangle</math> with <math>l=0</math> emitting a photon with wave vector <math>\mathbf{k'}</math>. Find the probability that the angle between the two wavevectors to be <math> \theta </math>. | ||
Ans: | Ans: | ||
<math>\mathcal{H}=\frac{1}{2m}\left(p-\frac{e}{c}A(r)\right)^2+V(r)+\sum_{k,\hat{\lambda}}\hbar\omega_{k}\left(\hat{a}_{k\hat{\lambda}}^{\dagger}\hat{a}_{k\hat{\lambda}}+\frac{1}{2}\right) </math> | |||
where | |||
<math>\mathbf{\hat{A}(r)}=\frac{1}{\sqrt{V}}\sum_{k,\lambda}\left[\sqrt{\frac{2\pi\hbar}{\omega_{k}}}c\;\left(\hat{a}_{k,\hat{\lambda}}\hat{\lambda}e^{ik\cdot r}+\hat{a}^{\dagger}_{k,\hat{\lambda}}\hat{\lambda^*}e^{-ik\cdot r}\right)\right]</math> | |||
Using second order time dependent perturbation theory , we can write the wavefunction in Dirac picture as, | |||
<math>|\chi(t)\rangle\approx|\chi_0\rangle+\frac{1}{i\hbar}\int_{-\infty}^{t}dt'\mathcal{H}'_I(t')|\chi_0\rangle+ | |||
\frac{1}{(i\hbar)^2}\int_{-\infty}^{t}dt'\int_{-\infty}^{t'}dt''\mathcal{H}'_I(t')\mathcal{H}'_I(t'')|\chi_0\rangle </math> | |||
where | |||
<math>\mathcal{H}'_I(t)=e^{\frac{i}{\hbar}\mathcal{H}^{(at)}_0t}\left( | |||
-\frac{e}{mc}A(r,t)\cdot p+\frac{e^2}{2mc^2}A(r,t)\cdot A(r,t)\right)e^{-\frac{i}{\hbar}\mathcal{H}^{(at)}_0t}</math> | |||
with | |||
<math>\mathbf{A(r,t)}=\frac{1}{\sqrt{V}}\sum_{k,\lambda}\left[\sqrt{\frac{2\pi\hbar}{\omega_{k}}}c\;\left(\hat{a}_{k,\hat{\lambda}}\hat{\lambda}e^{ik\cdot r-i\omega_{k} t}+\hat{a}^{\dagger}_{k,\hat{\lambda}}\hat{\lambda^*}e^{-ik\cdot r+i\omega_{k}t}\right)\right]</math> | |||
Since the system has rotational symmetry, so the internal eigenstate is <math>|n,l,m\rangle</math>, where <math>|n\rangle=|e\rangle,|i\rangle,|g\rangle</math>. The initial photon field is null <math>|\phi\rangle</math>. Initially <math>l=0</math>, so <math>m=0</math>, so | |||
<math>|\chi_0\rangle=|e,0,0;\psi\rangle</math>. | |||
The final state is <math>|g,0,0;1_{\lambda ,k },1_{\lambda ',k' }\rangle</math>. | |||
<math>\langle e,0,0;\psi|\chi(t)\rangle\approx|\chi_0\rangle+\frac{1}{i\hbar}\int_{-\infty}^{t}dt'\mathcal{H}'_I(t')|\chi_0\rangle+ | |||
\frac{1}{(i\hbar)^2}\int_{-\infty}^{t}dt'\int_{-\infty}^{t'}dt''\mathcal{H}'_I(t')\mathcal{H}'_I(t'')|\chi_0\rangle </math> | |||
where |
Revision as of 10:27, 29 April 2010
Question: A monoatomic atom undergo spontaneous emission. It changes from an excited state with to an intermediate state with emitting a photon with wave vector , and then to the ground state with emitting a photon with wave vector . Find the probability that the angle between the two wavevectors to be .
Ans:
where
Using second order time dependent perturbation theory , we can write the wavefunction in Dirac picture as,
where
with
Since the system has rotational symmetry, so the internal eigenstate is , where . The initial photon field is null . Initially , so , so
.
The final state is .
where