Talk:Phy5646: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 42: Line 42:
   \end{align}  </math>
   \end{align}  </math>


where <math> f(t,w_k,w_k')  </math> is independent of the direction of the emitted photons.


Here  
Here  
Line 52: Line 53:
   \end{align}  </math>
   \end{align}  </math>


 
Taking away the radial dependent part, ie, take away <math>|e\rangle,|i\rangle,|g\rangle</math> parts,
Define
and define


<math>\begin{align}
<math>\begin{align}
Line 60: Line 61:
x&=(r_+ + r_-)/2 \\
x&=(r_+ + r_-)/2 \\
y&=(r_+ - r_-)/2i \end{align}  </math>
y&=(r_+ - r_-)/2i \end{align}  </math>
we know
<math> \langle l',m'|z|l,m\rangle \neq 0 </math> only if <math>  m'=m </math>,
<math> \langle l',m'|r_+|l,m\rangle \neq 0 </math> only if <math>  m'=m+1 </math>,
<math>  \langle l',m'|r_-|l,m\rangle \neq 0 </math> only if <math>  m'=m-1 </math>
<math>\begin{align}  \langle 1,m|\mathbf{r}|0,0\rangle &= \langle 1,m|\hat{x}x+\hat{y}y+\hat{z}z|0,0\rangle \\
&=  \frac{\hat{x}}{2}\langle 1,m|r_+ + r_-|0,0\rangle  +  \frac{\hat{y}}{2i}\langle 1,m|r_+ - r_-|0,0\rangle + \hat{z}\langle 1,m|z|0,0\rangle
\end{align}

Revision as of 12:24, 29 April 2010

Question: A monoatomic atom undergo spontaneous emission. It changes from an excited state with to an intermediate state with emitting a photon with wave vector , and then to the ground state with emitting a photon with wave vector . Find the probability that the angle between the two wavevectors to be .

Ans:

where



Using second order time dependent perturbation theory , we can write the wavefunction in Dirac picture as,

where

with

Since the system has rotational symmetry, so the internal eigenstate is , where . The initial photon field is null . Initially , so , so intial state is and final state is . Therefore


where to change from state to to , we need two momentum operator, so the first term must be zero. And so

where is independent of the direction of the emitted photons.

Here

Taking away the radial dependent part, ie, take away parts, and define

we know

only if ,

only if ,

only if


<math>\begin{align} \langle 1,m|\mathbf{r}|0,0\rangle &= \langle 1,m|\hat{x}x+\hat{y}y+\hat{z}z|0,0\rangle \\ &= \frac{\hat{x}}{2}\langle 1,m|r_+ + r_-|0,0\rangle + \frac{\hat{y}}{2i}\langle 1,m|r_+ - r_-|0,0\rangle + \hat{z}\langle 1,m|z|0,0\rangle \end{align}