Electron-phonon interactions and Kohn anomalies

From PhyWiki
Jump to navigation Jump to search

Electron-phonon interactions

The study of interactions between electrons and phonons, is an interesting and classical topic in quantum many body theory as well as condensed matter physics. The electron-phonon interaction leads to many novel properties in metals, for instance, electrical resistance, thermal resistance, superconductivity and the renormalization of linear electronic specific heat. [1]

Free electrons in lattice

In contrary to the independent electron model, where electrons experience weak periodic potential, the interaction of an electron with all other electrons and nuclei is represented by ‘effective potential’ in some average way, in the tight-binding approximation, electrons move in strong periodic potentials which cannot be approximated by an average background. In this situation, we can assume that the atoms are very widely separated and atomic orbitals remain undistorted.

As an example, the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H^+_2} problem will be revisited in the second quantization language. States Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |1>} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |2>} denote the states of electrons locate on atom 1 and 2, respectively. The state of the two-electron system is thus given by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |n_1, n_2>} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |n_i>} is the occupation number for each atom. Define creation and annihilation operators Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c^+_i} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_i} , which obey anti-commutation relations:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left\{c_i, c^+_j\right\}=\delta_i,j} ,
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left\{c_i, c_j\right\}=0} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left\{c^+_i, c^+_j\right\}=0} .

The Hamiltonian has the following form:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H=E_0(c^+_1c_1+c^+_2c_2)-t(c^+_1c_2+c^+_2c_1)}

Note that this Hamiltonian is non-diagonal. In order to diagonalize it, we could define the following bonding and anti-bonding operators:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_B=1/\sqrt{2}(c_1+c_2)}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_A=1/\sqrt{2}(c_1-c_2)}

Both bonding and anti-bonding operators obey anti-commutation relations. The Hamiltonian can be expressed by these operators as

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H=(E_0+t)c^+_Ac_A+(E_0-t)c^+_Bc_B}

The state of the system is thus given by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |n_A, n_B>} .

It is easy to generalize the above single molecule problem to electrons moving in crystal. Assume that the tight binding approximation is valid and only one atomic orbital (say, orbital A) is taken into consideration. Moreover, assume that only nearest neighbor hopping term is significant. The Hamiltonian of the system is given by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H=E_A\sum_{i,\sigma}c^+_{i,\sigma}-t_A\sum_{<i,j>,\sigma}(c^+_{i,\sigma}c_{j,\sigma}+c^+_{j,\sigma}c_{i,\sigma})}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle <i,j>} means that the summation goes over only nearest neighbor sites. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R_i} is the site position and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_{i,\sigma}} is the annihilation operator which destroys one electron in orbital A at site i with spin Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma} .

Phonons: crystal vibrations

Lattice Vibration and Phonons in 1D

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H^0_{ph} = \sum_{k \lambda}\hbar\omega_{k \lambda}( a^\dagger_{k \lambda} + \frac{1}{2} )}

Acoustical and Optical Phonon in 3D

In moatomic Bravais lattice.

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle U \approx U_0 + \frac{1}{2}\sum_{ \mathbf{R}^0_1 \mathbf{R}^0_2 } \sum_{\alpha\beta} u_\alpha ( \mathbf{R}^0_1) \frac{\partial^2 U}{\partial u_\alpha (\mathbf{R}^0_1) \partial u_\beta (\mathbf{R}^0_2) }|_{\mathbf{u}=0} u_\beta(\mathbf{R}^0_2) }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H^0_{ph} = \sum_{\mathbf{k} \lambda} \hbar \omega_{\mathbf{k} \lambda}( a^\dagger_{\mathbf{k} \lambda} + \frac{1}{2} ), [a_{\mathbf{k} \lambda} , a^\dagger_{\mathbf{k} \lambda}] = \delta_{\mathbf{k,k^\prime}} \delta_{ \lambda , \lambda^\prime} }

Derivation of Hamiltonian Electron-Phonon Coupling

The Hamiltonian for the electron-phonon interaction can be described as

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H = H^0_{el} + H^0_{ph} + H_{coul} + H_{int}}

Where

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H^0_{el} = \sum_{k \sigma}E_k c^\dagger_{k \sigma} c_{k \sigma}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H^0_{ph} = \sum_{k \lambda}\omega_{k \lambda}( a^\dagger_{k \lambda} + \frac{1}{2} )}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H_{coul} = \frac{1}{2} \sum_{k k^\prime q \atop \sigma \sigma^{\prime} } V(q)c^\dagger_{k ^\prime + q \sigma^\prime } c^\dagger_{k \sigma} c_{k+q \sigma} c_{k^{\prime} \sigma^{\prime}} }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H_{int} = \sum_{k k^{\prime} \sigma \lambda} g_{k k^{\prime} c^{\dagger}_{k \sigma}} c_{k^{\prime} \sigma} c_{k^\prime \sigma} ( a^\dagger_{-q \lambda} + a_{q \lambda} ) }

Feynman diagrams of electron-phonon coupling

Electron-phonon interaction in the lattice model

Jellium model

The Polaron problem

Linear response calculations of electron-phonon interactions

Kohn anomalies

the coupling function refers to the scattering of a quasi-particle from a point Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle '''k_1''' } to a point k_2 in momentum space with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle '''q'''='''k'''_1-'''k'''_2} . Energy and momentum conservation require that both and lie on the Fermi surface. This immediately introduces a restriction on the phonon wave vector  : phonon wave vectors connecting nested parts of the Fermi surface will strongly interact with the electrons leading to a large phonon damping, whereas those which do not span the Fermi surface will not interact with electrons. Kohn pointed out that the interaction of phonons with the conduction electrons in a metal should cause anomalies in the phonon spectra.



Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k^2,} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = x^2\,}

Examples