( n − 1 4 ) π h = ∫ 0 r 0 2 m [ E − V 0 l n ( r / a ) ] d r {\displaystyle (n-{\frac {1}{4}})\pi h=\int _{0}^{r_{0}}{\sqrt {2m[E-V_{0}ln(r/a)]}}dr}
( E = V 0 l n ( r 0 / a ) ‴ d e f i n e s ‴ r 0 ) {\displaystyle (E=V_{0}ln(r_{0}/a)'''defines'''r_{0})}
= 2 m ∫ 0 r 0 V 0 l n ( r 0 / a ) − V 0 l n ( r / a ) d r = 2 m V 0 ∫ 0 r 0 l n ( r 0 / a ) d r {\displaystyle {\sqrt {2m}}\int _{0}^{r_{0}}{\sqrt {V_{0}ln(r_{0}/a)-V_{0}ln(r/a)}}dr={\sqrt {2mV_{0}}}\int _{0}^{r_{0}}{\sqrt {ln(r_{0}/a)}}dr}
Let x ≡ l n ( r 0 / a ) {\displaystyle x\equiv ln(r_{0}/a)}
so e x = r 0 / r {\displaystyle e^{x}=r_{0}/r} or r = r 0 e − x ⇒ d r = − r 0 e − x d x ( n − 1 4 ) π ℏ = 2 m V 0 ( − r 0 ) ∫ x 1 x 2 x e − e d x {\displaystyle r=r_{0}e^{-x}\Rightarrow dr=-r_{0}e^{-x}dx(n-{\frac {1}{4}})\pi \hbar ={\sqrt {2mV_{0}}}(-r_{0})\int _{x_{1}}^{x_{2}}{\sqrt {x}}e^{-e}dx} . Limits : { r = 0 ⇒ x 1 = ∞ r = r 0 ⇒ x 2 = 0 {\displaystyle {\begin{cases}&{\text{ }}r=0\Rightarrow x_{1}=\infty \\&{\text{ }}r=r_{0}\Rightarrow x_{2}=0\end{cases}}} ( n − 1 4 ) π ℏ = 2 m V 0 ( r 0 ) ∫ 0 ∞ x e − x d x = 2 m V 0 r 0 Γ ( 3 / 2 ) = 2 m V 0 r 0 π 2 {\displaystyle (n-{\frac {1}{4}})\pi \hbar ={\sqrt {2mV_{0}}}(r_{0})\int _{0}^{\infty }{\sqrt {x}}e^{-x}dx={\sqrt {2mV_{0}}}r_{0}\Gamma (3/2)={\sqrt {2mV_{0}}}r_{0}{\frac {\sqrt {\pi }}{2}}}
r 0 = 2 π m V 0 ( n − 1 4 ) ⇒ E n = V 0 l n [ ℏ a 2 π m V 0 ( n − 1 4 ) ] = V 0 l n ( n − 1 4 ) + V 0 l n [ ℏ a 2 π m V 0 ] {\displaystyle r_{0}={\sqrt {\frac {2\pi }{mV_{0}}}}(n-{\frac {1}{4}})\Rightarrow E_{n}=V_{0}ln[{\frac {\hbar }{a}}{\sqrt {\frac {2\pi }{mV_{0}}}}(n-{\frac {1}{4}})]=V_{0}ln(n-{\frac {1}{4}})+V_{0}ln[{\frac {\hbar }{a}}{\sqrt {\frac {2\pi }{mV_{0}}}}]}
E n + 1 − E n = V 0 l n ( n + 3 4 ) − V 0 l n ( n − 1 4 ) = V 0 l n ( n + 3 / 4 n − 1 / 4 ) {\displaystyle E_{n+1}-E_{n}=V_{0}ln(n+{\frac {3}{4}})-V_{0}ln(n-{\frac {1}{4}})=V_{0}ln({\frac {n+3/4}{n-1/4}})} ,which is indeed independent of m (and a).
Back to WKB in Spherical Coordinates