Phy5645/Gamowfactor

From PhyWiki
Revision as of 22:46, 14 January 2014 by RobertThrockmorton (talk | contribs)
Jump to navigation Jump to search

From the WKB apporximation we know that at the turning point, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E= V(x)= V_{coul} = \frac{1}{4\pi\epsilon_{0}}\frac{2z_{1}e^{2}}{R_{c}}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R_{c} = \frac{1}{4\pi\epsilon_{0}}\frac{2z_{1}e^{2}}{E}}

Now the Transition probabilty Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T\cong \Theta ^{2}} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Theta = e^{-\int_{b}^{a}q(x)dx}}

and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q(x)= \frac{1}{\hbar}\sqrt{2m\left(V(x)-E\right)}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Theta ^{2} = e^{-2\int_{b}^{a} q(x)dx}}

In the present problem Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b= R} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a = R_{c}}

Now, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_{R}^{R_{c}} \left(\frac{2m}{\hbar^{2}}\right)^{\frac{1}{2}}(V(x)-E)^{\frac{1}{2}} dr = \left(\frac{2m}{\hbar^{2}}\right)^{\frac{1}{2}}\int_{R}^{R_{c}} \left(\frac{1}{4\pi\epsilon_{0}}\frac{2z_{1}e^{2}}{r}-E\right)^\frac{1}{2}dr}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \left(\frac{2m}{\hbar^{2}}\right)^{\frac{1}{2}}\left(\frac{2z_{1}e^{2}}{4\pi\epsilon_{0}}\right)^{\frac{1}{2}}\int_{R}^{R_{c}} \left [ \frac{1}{r} - \frac{1}{R_{c}}\right ]^{\frac{1}{2}}dr}

let, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle I = \int_{R}^{R_{c}} \left [ \frac{1}{r} - \frac{1}{R_{c}}\right ]^{\frac{1}{2}}dr}


Put, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r= R_{0}cos^{2}\theta} and

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dr= -R_{0}2cos\theta sin\theta}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle I= 2\int_{0}^{cos^{-1}\sqrt{\frac{R}{R_{c}}}} \left( \frac{R_{c}sin^{2}\theta}{cos^{2}\theta}\right)^{\frac{1}{2}} cos\theta sin\theta d\theta}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2R_{c}^{\frac{1}{2}}\int_{0}^{cos^{-1}\sqrt{\frac{R}{R_{c}}}} sin^{2}\theta d\theta }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle I= R_{c}^{\frac{1}{2}}\int_{0}^{cos^{-1}\sqrt{\frac{R}{R_{c}}}} ( 1-{cos2\theta}) d\theta}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle I= R_{c}^{\frac{1}{2}}\left [ \theta - sin\theta cos\theta \right ]_{0}^{cos^{-1}\sqrt{\frac{R}{R_{c}}}}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle I= R_{c}^{\frac{1}{2}}\left [ cos^{-1}\sqrt{\frac{R}{R_{c}}} - sin \left(cos^{-1}\sqrt{\frac{R}{R_{c}}}\right) cos\left(cos^{-1}\sqrt{\frac{R}{R_{c}}}\right) \right ]}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle I= R_{c}^{\frac{1}{2}}\left [ cos^{-1}\sqrt{\frac{R}{R_{c}}} - \sqrt{\frac{R}{R_{c}}}\sqrt{1- \frac{R}{R_{c}}} \right ]}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle I= R_{c}^{\frac{1}{2}}\left [ cos^{-1}\sqrt{\frac{R}{R_{c}}} - \sqrt{\frac{R}{R_{c}}- \left(\frac{R}{R_{c}}\right)^{2}} \right ]}

Let us consider Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R_{c} \gg R}

Then we have

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle I\cong \sqrt{R_{c}}\left(cos^{-1}\sqrt{\frac{R}{R_{c}}}-\sqrt{\frac{R}{R_{c}}} \right)}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle cos^{-1}\sqrt{\frac{R}{R_{c}}} \cong \frac{\pi}{2} - \left(\frac{R}{R_{c}}\right)^{\frac{1}{2}}}

Setting, charge of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha} particle = 2= Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z_{2}} (in general)

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int q(x)dx = \left ( \frac{2Mz_{1}z_{2}e^{2}R_{c}}{\hbar^{2}4\pi\epsilon_0} \right )^{\frac{1}{2}}\left [\frac{\pi}{2} - 2\left(\frac{R}{R_{c}}\right)^{\frac{1}{2}} \right ]}

Now Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T\cong e^{-2\int q(x)dx} = exp\left [ -\frac{\pi z_{1}z_{2}e^{2}}{\hbar 4\pi\epsilon_0} \left (\frac{2M}{e} \right )^{2} + \frac{4}{\hbar} \left ( \frac{2z_{1}z_{2}e^{2}MR}{4\pi\epsilon_0} \right )^{\frac{1}{2}}\right ]}

Now putting Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E= \frac{1}{2}mv^{2}} , veloctiy of the particle

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T\cong exp\left ( \frac{-2\pi z_{1}z_{2}e^{2}}{4\pi\epsilon_0\hbar v} \right )exp \left ( \frac{32z_{1}z_{2}e^{2}MR}{4\pi\epsilon_0\hbar^{2} } \right )^{\frac{1}{2}}}

The 1st exponential term is known as the Gamow factor. The Gamow factor determines the dependence of the probability on the speed (or energy) of the alpha particle.

Back to The WKB Approximation