(Submitted by team 1)
Using the Born approximation, find the differential cross section for the next exponential potential:

If the potential V is spherical symmetric we can use the equation:

So,

Solving this integral by parts,
![{\displaystyle {\begin{aligned}f_{born}(\theta )&={\frac {-2mV_{0}}{\hbar ^{2}q}}{\frac {\partial }{\partial q}}\int _{0}^{\infty }cos(qr')e^{-{\frac {r'}{a}}}dr'\\&={\frac {-2mV_{0}}{\hbar ^{2}q}}{\frac {\partial }{\partial q}}Re[\int _{0}^{\infty }e^{iqr'}e^{-{\frac {r'}{a}}}dr']\\&={\frac {-2mV_{0}}{\hbar ^{2}q}}{\frac {\partial }{\partial q}}Re[{\frac {e^{(iq-{\frac {1}{a}})r'}}{iq-{\frac {1}{a}}}}]_{_{0}}^{^{\infty }}\\&={\frac {-2mV_{0}}{\hbar ^{2}q}}{\frac {\partial }{\partial q}}Re[{\frac {1}{{\frac {1}{a}}+iq}}]\\\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2872c21e8bb0318907826bffab9740a8407c8036)

So, the differential cross section,
