(Submitted by team 1)
Using the Born approximation, find the differential cross section for the next exponential potential:

If the potential
is spherical symmetric we can use the equation:

So,

Solving this integral by parts,
![{\displaystyle {\begin{aligned}f_{born}(\theta )&=-{\frac {2mV_{0}}{\hbar ^{2}q}}{\frac {\partial }{\partial q}}\int _{0}^{\infty }\cos(qr')e^{-{\frac {r'}{a}}}dr'\\&=-{\frac {2mV_{0}}{\hbar ^{2}q}}{\frac {\partial }{\partial q}}Re\left[\int _{0}^{\infty }e^{iqr'}e^{-{\frac {r'}{a}}}dr'\right]\\&=-{\frac {2mV_{0}}{\hbar ^{2}q}}{\frac {\partial }{\partial q}}Re\left[{\frac {e^{(iq-{\frac {1}{a}})r'}}{iq-{\frac {1}{a}}}}\right]_{_{0}}^{^{\infty }}\\&=-{\frac {2mV_{0}}{\hbar ^{2}q}}{\frac {\partial }{\partial q}}Re\left[{\frac {1}{{\frac {1}{a}}+iq}}\right]\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/080bdf3f08e29b01baf289380a37508c20eaa5d6)

So, the differential cross section,
