Phy5645/Energy conservation

From PhyWiki
Revision as of 16:54, 9 December 2009 by XuJiang (talk | contribs) (→‎Example 1)
Jump to navigation Jump to search

Example 1

Consider a particle moving in a potential field , (1) Prove the average energy equation: , where W is energy density, (2) Prove the energy conservation equation: , where is energy flux density:

Prove: the energy operator in three dimensions is: so the average energy in state is: , Using: , hence: Failed to parse (syntax error): {\displaystyle <E>=\iiint\left(-\frac{\hbar^2}{2m}\right)\left(\nabla\left(\psi^*\nabla\psi\right)-\nabla\psi^*\nabla\psi\right)d^3x +\iiint\psi^*\nabla\psi d^3x =-\frac{\hbar^2}{2m}\iiint\left(\nabla\left(psi^*\nabla\psi\right)d^3x + \frac{\hbar^2}{2m}\iiint\nabla\psi^*\nabla\psi d^3x + \iiint\psi^*\nabla\psi d^3x} ,