Harmonic Oscillator in an Electric Field

From PhyWiki
Jump to navigation Jump to search

The Hamiltonian of the system is:

we seprate the Hamiltonian () where

Notice that are identical to the Hamiltonian of the one dimensional harmonic oscillator, so we can write the wave function

, where

, and are the wave functions of the one dimensional harmonic oscillator:

The equation of the is

changing variables to

we obtain the diffrential equation for a one dimensional harmonic oscillator with the solution

The quantization condition in this case is so the energy eigenvalues are

In conclusion,the wave functions are