A solved problem for spins

From PhyWiki
Jump to navigation Jump to search

An electron is at rest in an oscillating magnetic field

where and are constants.

(a) Construct the Hamiltonian matrix for this system.

(b) The electron starts out (at t = 0) in the spin-up state with respect to the x-axis [that is,]. Determine at any subsequent time. Beware.' This is a time-dependent Hamiltonian, so you cannot get in the usual way from stationary states. Fortunately, in this case you can solve the time-dependent Schr/Sdinger equation directly.

(c) Find the probability of getting if you measure

(d) What is the minimum field required to force a complete flip in ?

Solution:

(a)

(b)

with

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dot{\alpha }=\frac{i\mu B_{0}}{2}Cos(\omega t)\alpha \Rightarrow \frac{\mathrm{d} \alpha }{ \alpha }=\frac{i\mu B_{0}}{2}Cos(\omega t)dt\Rightarrow Ln\alpha =\frac{i\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }+constant.}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha (t)=Ae^{\frac{i\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }};\alpha (0)=A=\frac{1}{\sqrt{2}}} , so Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha (t)=\frac{1}{\sqrt{2}}e^{\frac{i\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }}}


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dot{\beta }=-i\frac{\mu B_{0}}{2}Cos(\omega t)\beta \Rightarrow \beta (t)=\frac{1}{\sqrt{2}}e^{-i\frac{\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }}\Rightarrow \chi (t)=\frac{1}{\sqrt{2}}\begin{pmatrix} e^{i\frac{\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }}\\ e^{-i\frac{\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }} \end{pmatrix}}