Phy5646/Non-degenerate Perturbation Theory - Problem 3

From PhyWiki
Jump to navigation Jump to search

(Submitted by Team 1)

This example taken from "Quantum Physics" 3rd ed., Stephen Gasiorowicz, p. 177.

Problem: A charged particle in a simple harmonic oscillator, for which , subject to a constant electric field so that . Calculate the energy shift for the level to first and second order in . (Hint: Use the operators and for the evaluation of the matrix elements).


Solution: (a) To first order we need to calculate . It is easy to show that . One way is to use the relation


and since and we see that .


(b) The second-order term involves


The only contributions come from and , so that



and thus


The result is independent of . We can check for its correctness by noting that the total potential energy is



Thus the perturbation shifts the center of the potential by and lowers the energy by , which agrees with our second-order result.