Phy5646/homeworkintimeperturbation
Problem in Time Dependent Perturbation theory: Magnetic Resonance Consider the HamiltonianFailed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H=H_{0}+H_{1}(t)}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H_{0}=E_{1}|1\rangle\langle1|+E_{2}|2\rangle\langle2|}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H_{1}(t)=\gamma e^{i\omega t}|1\rangle\langle2|+\gamma e^{-i\omega t}|2\rangle\langle1|}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi=a_{1}(t)e^{-iE_{1}t/\hbar}|1\rangle+a_{2}(t)e^{-iE_{2}t/\hbar}|2\rangle}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hbar^{2}\lambda^{2}-\hbar^{2}\lambda(\omega-\omega_{21})-\gamma^{2}=0}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda_{\pm}=\frac{1}{2}(\omega-\omega_{21})\pm\frac{1}{2}\sqrt{(\omega-\omega_{21})^{2}+4\frac{\gamma^{2}}{\hbar^{2}}}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_{1}(t)=C_{1}e^{i\lambda_{+}t}+B_{1}e^{i\lambda_{-}t}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_{2}(t)=C_{2}e^{i\lambda_{+}t}+B_{2}e^{i\lambda_{-}t}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_{2}(0)=0}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C_{2}=-B_{2}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_{2}(t)=2iC_{2}e^{i(\omega-\omega_{21})t/2}\sin[t\sqrt{\frac{(\omega-\omega_{21})^{2}}{4}+\frac{\gamma^{2}}{\hbar^{2}}}]}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_{1}(t)=\frac{i\hbar}{\gamma}e^{i(\omega-\omega_{21})t}\dot{a}_{2}=-\frac{2\hbar}{\gamma}C_{2}\{i\frac{\omega-\omega_{21}}{2}\sin[t\sqrt{\frac{(\omega-\omega_{21})^{2}}{4}+\frac{\gamma^{2}}{\hbar^{2}}}]+\sqrt{\frac{(\omega-\omega_{21})^{2}}{4}+\frac{\gamma^{2}}{\hbar^{2}}}\cos[t\sqrt{\frac{(\omega-\omega_{21})^{2}}{4}+\frac{\gamma^{2}}{\hbar^{2}}}]\}e^{i\frac{3}{2}(\omega-\omega_{21})t}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_{1}(0)=1}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C_{2}=-\frac{\gamma}{2\hbar\sqrt{\frac{(\omega-\omega_{21})^{2}}{4}+\frac{\gamma^{2}}{\hbar^{2}}}}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |a_{2}(t)|^{2}=\frac{(\gamma/\hbar)^{2}}{\frac{1}{4}(\omega-\omega_{21})^{2}+\frac{\gamma^{2}}{\hbar^{2}}}\sin^{2}[t\sqrt{\frac{(\omega-\omega_{21})^{2}}{4}+\frac{\gamma^{2}}{\hbar^{2}}}]}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |a_{1}(t)|^{2}=\frac{1}{\frac{1}{4}(\omega-\omega_{21})^{2}+\frac{\gamma^{2}}{\hbar^{2}}}\{[\frac{(\omega-\omega_{21})^{2}}{4}+\frac{\gamma^{2}}{\hbar^{2}}]\cos^{2}[t\sqrt{\frac{(\omega-\omega_{21})^{2}}{4}+\frac{\gamma^{2}}{\hbar^{2}}}]+\frac{(\omega-\omega_{21})^{2}}{4}\sin^{2}[t\sqrt{\frac{(\omega-\omega_{21})^{2}}{4}+\frac{\gamma^{2}}{\hbar^{2}}}]\}=1-\frac{\gamma^{2}/\hbar^{2}}{\frac{(\omega-\omega_{21})^{2}}{4}+\frac{\gamma^{2}}{\hbar^{2}}}\sin^{2}[t\sqrt{\frac{(\omega-\omega_{21})^{2}}{4}+\frac{\gamma^{2}}{\hbar^{2}}}]=1-|a_{2}(t)|^{2}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F(\omega)=\frac{(2\gamma/\hbar)^{2}}{(\omega-\omega_{21})^{2}+(2\gamma/\hbar)^{2}}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \omega=\omega_{21}=\frac{E_{2}-E_{1}}{\hbar}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4\gamma/\hbar}