Free Particle in Spherical Coordinates

From PhyWiki
Jump to navigation Jump to search

A free particle is a specific case when Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_0=0\!} of the motion in a uniform potential Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(r)=V_0\!} . So it's more useful to consider a particle moving in a uniform potential. The Schrödinger equation for the radial part of the wave function is:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial r^2}+\frac{\hbar^2}{2m}\frac{l(l+1)}{r^2}+V_0\right)u_l(r)=Eu_l(r)}

let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k^2=\frac{2m}{\hbar^2}|E-V|} . Rearranging the equation gives

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(-\frac{\partial^2}{\partial r^2}+\frac{l(l+1)}{r^2}-k^2\right)u_l(r)=0}

Letting Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho=kr\!} gives the terms that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{r^{2}}=\frac{k^{2}}{\rho ^{2}}} and . Then the equation becomes:

where and become the raising and lowering operators:

Being , it can be shown that

For , , gives the solution as:

The raising operator can be applied to the ground state in order to find high orders of ;

By this way, we can get the general expression:

,

where is spherical Bessel function and is spherical Neumann function.


Explicit Forms of the Spherical Bessel and Neumann Functions

The spherical Hankel functions of the first and second kind can be written in terms of the spherical Bessel and spherical Neumann functions, and are defined by:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h_{\ell}^{(1)} = j_{\ell}(z) + in_{\ell}(z) }

and

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h_{\ell}^{(2)} = j_{\ell}(z) - in_{\ell}(z) }


The asymptotic form of the spherical Bessel and Neumann functions (as z Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rightarrow} large) are given by:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j_{\ell}(z) = \frac{\sin(z-\frac{\ell \pi}{2})}{z} }

and

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n_{\ell}(z) = \frac{\cos(z-\frac{\ell \pi}{2})}{z} }

The first few zeros of the spherical Bessel function:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ell = 0: 3.142, 6.283, 9.425, 12.566 }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ell = 1: 4.493, 7.725, 10.904, 14.066 }

The derivatives of the spherical Bessel and Neumann functions are defined by:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j'_{\ell}(z) = \frac{\ell}{z}j_{\ell}(z) - j_{\ell+1}(z) }

and

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n'_{\ell}(z) = \frac{\ell}{z}n_{\ell}(z) - n_{\ell+1}(z) }