Phy5645/Energy conservation

From PhyWiki
Revision as of 00:11, 10 December 2009 by XuJiang (talk | contribs)
Jump to navigation Jump to search

Example 1

Consider a particle moving in a potential field Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(\textbf{r})} ,

(1) Prove the average energy equation: , where W is energy density,

(2) Prove the energy conservation equation: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial W}{\partial t}+\nabla \cdot \textbf{S}=0} , where is energy flux density: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textbf{S}=-\frac{\hbar^2}{2m}\left(\frac{\partial\psi^*}{\partial t}\nabla\psi + \frac{\partial\psi}{\partial t}\nabla\psi^*\right)}

Proof:

(1):the energy operator in three dimensions is: so the average energy in state Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi } is: , Using: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi^*\nabla^2\psi=\nabla\left(\psi^*\nabla\psi\right)-\nabla\psi^*\nabla\psi } , hence: ,

Using Gauss Theorem for the last term: , with the condition: , for infinite surface.

Hence:

(2):first we find the time derivative of energy density:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial W}{\partial t}=\frac{\partial}{\partial t}\left(\nabla\psi^*\nabla\psi+\psi^*\nabla\psi\right) =\frac{\hbar^2}{2m}\left(\nabla\psi^*\nabla\frac{\partial\psi}{\partial t} + \nabla\frac{\partial\psi^*}{\partial t}\nabla\psi\right) + \frac{\partial\psi^*}{\partial t}\nabla\psi+\psi^*\nabla\frac{\partial\psi}{\partial t}} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\frac{\hbar^2}{2m}\nabla\cdot\left(\nabla\psi^*\cdot\frac{\partial\psi}{\partial t} + \frac{\partial\psi^*}{\partial t}\cdot\nabla\psi\right)+\frac{\partial\psi^*}{\partial t}\left(-\frac{\hbar^2}{2m}\nabla^2\psi+\nabla\psi\right)+\frac{\partial\psi}{\partial t}\left(-\frac{\hbar^2}{2m}\nabla^2\psi^*+\nabla\psi^*\right)} ,

Using Schrodinger Equations: , and, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -i\hbar\frac{\partial\psi^*}{\partial t}=-\frac{\hbar^2}{2m}\nabla^2\psi^*+\nabla\psi^*} ,

Also the energy flux density is: ,

So:Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial W}{\partial t}=-\nabla\cdot\textbf{S}+\frac{\partial\psi^*}{\partial t}\frac{\partial\psi}{\partial t}-\frac{\partial\psi}{\partial t}\frac{\partial\psi^*}{\partial t}=-\nabla\cdot\textbf{S}} , Hence: