Phy5645/AngularMomentumProblem

From PhyWiki
Revision as of 22:32, 30 November 2009 by MarkWartenbe (talk | contribs)
Jump to navigation Jump to search

Posted by Group 6:

A system is initally in the state:
Let us now find the value of the opperator acting on the system as well as the probability of finding each value.
We may first rewright the notation for the system as follows;
acting on the system produces three values for ;
The probablity for finding the value is;
This can easially be verified since;
and
The probablites of measuring are give as follows;
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_0=|<1,0|\psi>|^2=|\sqrt{3/5}<1,0|1,0>|^2=3/5}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_1=|<1,1|\psi>|^2=|\sqrt{1/5}<1,1|1,1>|^2=1/5}
Now we will calculate the uncertainties Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta L_x} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta L_y} and the product Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta L_x \Delta L_y}
After measuring Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle l_z=-\hbar} the system will be in the eigenstate Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |lm>=|1,-1>} , that is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi(\theta,\phi)=Y_1,_-1(\theta,|phi)} . We will first calculate the expectation values of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L_x, L_y, L^2_x, L^2_y} using Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |1,-1>} . Symmetry requires Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle <1,-1|L_x|1,-1>=<1,-1|L_y|1,-1>=0} . Using the relation Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle l-1} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m=-1} ;
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle <L^2_x>=<L^2_y>=1/2[<L^2>-<L^2_z>]=\hbar^2/2[l(l+1)-m^2]=\hbar^2/2}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta L_x=\sqrt{<L^2_x>}=\hbar/\sqrt{2}=\Delta L_y}
Therefore;
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta L_x \Delta L_y=\sqrt{<L^2_x><L^2_y>}=\hbar^2/2}