Phy5645/Energy conservation
Jump to navigation
Jump to search
Example 1
Consider a particle moving in a potential field , (1) Prove the average energy equation: , where W is energy density, (2) Prove the energy conservation equation: , where is energy flux density:
Prove: the energy operator in three dimensions is: so the average energy in state is: , Using: , hence: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle <E>=\iiint\left(-\frac{\hbar^2}{2m}\right) \left{\nabla\left(\psi^*\psi\right)-\nabla\psi^*\nabla\psi\right} d^3x+\iiint\psi^*\nabla\psi d^3x } ,