A solved problem for spins

From PhyWiki
Jump to navigation Jump to search

An electron is at rest in an oscillating magnetic field

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B=B_{0}Cos\left ( \omega t \right )\hat{k}}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_{0}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle omega} are constants.

(a) Construct the Hamiltonian matrix for this system.

(b) The electron starts out (at t = 0) in the spin-up state with respect to the x-axis [that is,Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi ^{0}=\chi _{+}^{(x)} )} ]. Determine Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi (t)} at any subsequent time. Beware.' This is a time-dependent Hamiltonian, so you cannot get Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi (t)} in the usual way from stationary states. Fortunately, in this case you can solve the time-dependent Schr/Sdinger equation directly.

(c) Find the probability of getting Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\hbar/2} if you measure Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_{x}}

(d) What is the minimum field Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (B_{0})} required to force a complete flip in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_{x}} ?

Solution:

(a)

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H=-\mu \mathbf{B}.\mathbf{S}=-\mu B_{0}Cos(\omega t)S_{z}= -\frac{\mu B_{0} \hbar}{2}Cos(\omega t)\begin{pmatrix} 1 &0 \\ 0 &-1 \end{pmatrix}}

(b)

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi (t)=\begin{pmatrix} \alpha (t)\\\beta (t)) \end{pmatrix}} with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha (0)=\beta (0)=\frac{1}{\sqrt{2}}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i\hbar\frac{\partial \chi }{\partial t}=i\hbar\begin{pmatrix} \dot{\alpha }\\ \dot{\beta } \end{pmatrix}=\mathbf{H}\chi =-\frac{\mu B_{0} \hbar}{2}Cos(\omega t)\begin{pmatrix} 1 &0 \\ 0 &-1\end{pmatrix}\begin{pmatrix} \alpha \\ \beta \end{pmatrix}=-\frac{\mu B_{0}\hbar}{2}Cos(\omega t)\begin{pmatrix} \alpha \\ -\beta \end{pmatrix}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dot{\alpha }=\frac{i\mu B_{0}}{2}Cos(\omega t)\alpha \Rightarrow \frac{\mathrm{d} \alpha }{ \alpha }=\frac{i\mu B_{0}}{2}Cos(\omega t)dt\Rightarrow Ln\alpha =\frac{i\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }+constant.}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha (t)=Ae^{\frac{i\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }};\alpha (0)=A=\frac{1}{\sqrt{2}}} , so Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha (t)=\frac{1}{\sqrt{2}}e^{\frac{i\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }}}


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dot{\beta }=-i\frac{\mu B_{0}}{2}Cos(\omega t)\beta \Rightarrow \beta (t)=\frac{1}{\sqrt{2}}e^{-i\frac{\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }}\Rightarrow \chi (t)=\frac{1}{\sqrt{2}}\begin{pmatrix} e^{i\frac{\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }}\\ e^{-i\frac{\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }} \end{pmatrix}}