Phy5646/Grp3SpinProb
Worked Spin Problem
Consider a unit vector Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{n}} , measured an angle Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi} from the positive Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{x}} axis in the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle xy} plane and angle Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta} from the positive Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z} axis.
Let the components of the spin vector Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overrightarrow{S}} along Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{n}} be Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_n = \hat{n} \cdot \overrightarrow{S}} .
a.) Solve the resulting eigenvalue equation. (Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_n \lambda = v \hbar \lambda } )
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_n = S_x \sin(\theta) cos(\phi) + S_y \sin(\theta) \sin(\phi) + S_z \cos(\theta)}
Which, in matrix form (using the definitions of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_x, S_y, S_z } ) looks like:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_n = \frac{\hbar}{2} \left(\begin{array}{cc} cos(\theta) & sin(\theta)e^{-i\phi} \\ sin(\theta)e^{i\phi} & -cos(\theta) \end{array} \right) }
And define Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi = \left(\begin{array}{c} a \\ b \end{array} \right) } .
So that:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_n\chi = \frac{\hbar}{2} \left(\begin{array}{c} a \cos(\theta) + b \sin(\theta)e^{-i\phi} \\ a\sin(\theta)e^{i\phi} - b\cos(\theta) \end{array} \right) }
And the eigenvalue equation becomes:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left( \begin{array}{c} a(\cos(\theta) - 2v) + b\sin(\theta)e^{-i\phi} \\ a\sin(\theta)e^{i\phi} - b(\cos(\theta) + 2v) \end{array} \right) = \left( \begin{array}{c} 0 \\ 0 \end{array} \right) }
Which has nontrivial solutions
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v = \pm \frac{1}{2}}
For Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_+, \frac{b}{a} = \tan(\frac{\theta}{2})e^{i\phi}}
Which means that:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi_+ = \left( \begin{array}{c} \cos(\frac{\theta}{2}) \\ \sin(\frac{\theta}{2})e^{i\phi} \end{array} \right) }
And, for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_-, \frac{b}{a} = -\cot(\frac{\theta}{2})e^{i\phi} }
So that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi_- = \left( \begin{array}{c} \sin(\frac{\theta}{2}) \\ -\cos(\frac{\theta}{2})e^{i\phi} \end{array} \right) }
b.) Verify that the two resulting eigenvectors are orthogonal.
c.) Show that these vectors satisfy the closure relation.
This amounts to showing that
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{i} |\Chi_i\rangle\langle\Chi_i| = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right) }
So:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle\Chi_{+}| = \left(\cos(\frac{\theta}{2}) \; \sin(\frac{\theta}{2})e^{-i\phi}\right)}
And thus,
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\Chi_{+}\rangle\langle\Chi_{+}|= \left( \begin{array}{c} \cos(\frac{\theta}{2}) \\ \sin(\frac{\theta}{2})e^{-i\phi})\end{array} \right) \left(\cos(\frac{\theta}{2}) \sin(\frac{\theta}{2})e^{-i\phi}\right)}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\Chi_{+}\rangle\langle\Chi_{+}|= \left(\begin{array}{cc} \cos^2(\frac{\theta}{2}) & \sin(\frac{\theta}{2})\cos(\frac{\theta}{2})e^{-i\phi} \\ \sin(\frac{\theta}{2})\cos(\frac{\theta}{2})e^{-i\phi} & \sin^2(\frac{\theta}{2}) \end{array} \right) }
While
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\Chi_{-}\rangle\langle\Chi_{-}|= \left( \begin{array}{c} \sin(\frac{\theta}{2}) \\ -\cos(\frac{\theta}{2})e^{-i\phi})\end{array} \right) \left(\sin(\frac{\theta}{2}) -\cos(\frac{\theta}{2})e^{-i\phi}\right)}
And Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\Chi_{-}\rangle\langle\Chi_{-}|= \left(\begin{array}{cc} \sin^2(\frac{\theta}{2}) & -\sin(\frac{\theta}{2})\cos(\frac{\theta}{2})e^{-i\phi} \\ -\sin(\frac{\theta}{2})\cos(\frac{\theta}{2})e^{-i\phi} & \cos^2(\frac{\theta}{2}) \end{array} \right) }
So, clearly: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\Chi_{-}\rangle\langle\Chi_{-}| + |\Chi_{+}\rangle\langle\Chi_{+}| = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right) }