Chapter4problem
(Problem submitted by team 9, based on problem 7.11 of Griffiths)
(a) Using the wave function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi= \begin{cases} A*cos(\frac{\pi*x}{a}) & \frac{-a}{2}<x<\frac{a}{2} \\ 0 & otherwise \end{cases}}
obtain a bound on the ground state energy of the one-dimensional harmonic oscillator. Compare Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle <H>_{min} } with the exact energy. Note: This trial wave function has a discontinuous derivative at Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\pm a}{2}} .
(b) Use Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Psi = B*sin(\frac{\pi*x}{a}) } on the interval (-a,a) to obtain a bound on the first excited state. Compare to the exact answer.
Solution
- (a)
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1= \int |\Psi|^2 dx = \int\limits_{-a/2}^{a/2} cos^2(\frac{\pi*x}{a})\, dx = |A|^2*\frac{a}{2} \Rightarrow A=\sqrt(\frac{2}{a}) }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle <T> = -\frac{\hbar^2}{2m} \int \Psi \frac{d^2 \Psi}{dx^2} = \frac{\hbar^2}{2m} (\frac{\pi}{a})^2\int\Psi^2dx = \frac{\pi^2\hbar^2}{2ma^2} }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle <V> = .5m\omega^2\int x^2\Psi^2dx = .5m\omega^2\frac{2}{a}\int\limits_{-a/2}^{a/2}x^2cos^2(\frac{\pi x}{a}dx } Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \frac{m\omega^2}{a}(\frac{a}{\pi})^2\int\limits_{-\pi/2}^{\pi/2}y^2cos^2(y)dy } Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \frac{m\omega^2a^2}{\pi^3}[\frac{y^3}{6}+(\frac{y^2}{4}-\frac{1}{8})sin(2y)+\frac{ycos(2y)}{4}]_{-a/2}^{a/2} } Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \frac{m\omega^2a^2}{4\pi^2}(\frac{\pi^2}{6}-1) }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle <H> = \frac{\pi^2 \hbar^2}{2ma^2} + \frac{m\omega^2a^2}{4\pi^2}(\frac{\pi^2}{6}-1)}
We do not need to worry about the discontinuity at . It is true that has delta functions there, but since no extra contribution comes from these points.
b
- Because this trial function is odd, it is orthogonal to the ground state. So, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle <\Psi|\Psi_{gs}>=0} . Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle <H> \ge E_{fe} } where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_{fe} } is the energy of the first excited state.