Phy5646

From PhyWiki
Jump to navigation Jump to search

Welcome to the Quantum Mechanics B PHY5646 Spring 2009

Schrodinger equation. The most fundamental equation of quantum mechanics which describes the rule according to which a state Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\Psi\rangle} evolves in time.

This is the second semester of a two-semester graduate level sequence, the first being PHY5645 Quantum A. Its goal is to explain the concepts and mathematical methods of Quantum Mechanics, and to prepare a student to solve quantum mechanics problems arising in different physical applications. The emphasis of the courses is equally on conceptual grasp of the subject as well as on problem solving. This sequence of courses builds the foundation for more advanced courses and graduate research in experimental or theoretical physics.

The key component of the course is the collaborative student contribution to the course Wiki-textbook. Each team of students (see Phy5646 wiki-groups) is responsible for BOTH writing the assigned chapter AND editing chapters of others.

This course's website can be found here.


Outline of the course:


Stationary state perturbation theory in Quantum Mechanics

Very often, quantum mechanical problems cannot be solved exactly. We have seen last semester that an approximate technique can be very useful since it gives us quantitative insight into a larger class of problems which do not admit exact solutions. The technique we used last semester was WKB, which holds in the asymptotic limit Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hbar\rightarrow 0} .

Perturbation theory is another very useful technique, which is also approximate, and attempts to find corrections to exact solutions in powers of the terms in the Hamiltonian which render the problem insoluble.

Typically, the (Hamiltonian) problem has the following structure

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{H}=\mathcal{H}_0+\mathcal{H}'}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{H}_0} is exactly soluble and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{H}'} makes it insoluble.

Raleigh-Shrödinger Peturbation Theory

To do this we first consider an auxiliary problem, parameterized by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda} :

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{H} = \mathcal{H}_0 + \lambda \mathcal{H}^'}

If we attempt to find eigenstates Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |N(\lambda)\rangle} and eigenvalues Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_n} of the Hermitian operator Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{H}} , and assume that they can be expanded in a power series of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda} :

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E(\lambda) = E_0 + \lambda E_1 + ... + \lambda^n E_n + ...}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |N(\lambda)\rangle = |\Psi_n^{(0)}\rangle + \lambda|\Psi_n^{(1)}\rangle + \lambda^2 |\Psi_n^{(2)}\rangle + ... \lambda^j |\Psi_n^{(j)}\rangle + ...}

then they must obey the equation,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{H} |N(\lambda)\rangle = E(\lambda) |N(\lambda)\rangle } .

Which, upon expansion, becomes:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\mathcal{H}_0 + \lambda \mathcal{H}')(\Sigma_{j=0}^{\infty}\lambda^j |j\rangle ) = (\Sigma_{l=0}^{\infty} \lambda^l E_l)(\Sigma_{j=0}^{\infty}\lambda^j |j\rangle)}

We shall denote the unperturbed states as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |n\rangle} . We choose the normalization such that the unperturbed states are normalized, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle n | n \rangle = 1} , and that the exact state satisfies Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle n|N(\lambda)\rangle=1} . Note that in general Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |N\rangle} will not be normalized.

In order for this method to be useful, the perturbed energies must vary continuously with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda} . Knowing this we can see several things about our, as yet undetermined peterbed energies and eigenstates. For one, as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda \rightarrow 0, |N(\lambda)\rangle \rightarrow |n\rangle} , for some unperturbed state Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |n\rangle} .

Perturbation correction eigenstates states are orthogonal unperturbed states,

Brillouin-Wigner Peturbation Theory

Time dependent perturbation theory in Quantum Mechanics

Interaction of radiation and matter

Quantization of electromagnetic radiation

Additional Reading


Classical view


Let's use transverse gauge (sometimes called Coulomb gauge):

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varphi (\mathbf{r},t)=0 }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nabla \cdot \mathbf{A}=0}

In this gauge the electromagnetic fields are given by:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{E}(\mathbf{r},t)=-\frac{1}{c}\frac{\partial \mathbf{A} }{\partial t}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{B}(\mathbf{r},t)=\nabla \times \mathbf{A}}

The energy in this radiation is

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varepsilon = \frac{1}{8\pi} \int d^{3}\mathbf{r} (\mathbf{E}^{2}+\mathbf{B}^{2})}

The rate and direction of energy transfer are given by poynting vector

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{P} = \frac{c}{4\pi} \mathbf{E} \times \mathbf{B} }

The radiation generated by classical current is

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Box \mathbf{A} = -\frac{4\pi}{c} \mathbf{j}}

Where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Box} is the d'Alembert operator. Solutions in the region where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{j}=0} are given by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{A}(\mathbf{r},t) = \alpha \boldsymbol{\lambda}\frac{e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)}}{\sqrt{V}}+\alpha^{*} \boldsymbol{\lambda}^{*} \frac{e^{-i(\mathbf{k}\cdot\mathbf{r}-\omega t)}}{\sqrt{V}} }

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \omega=c|\mathbf{k}|} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\lambda}\cdot \mathbf{k}=0 } in order to satisfy the transversality. Here the plane waves are normalized respect to a volume Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V} . This is just for convenience and the physics wont change. We can choose Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\lambda}\cdot\boldsymbol{\lambda}^{*}=1} . Notice that in this writing Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{A}} is a real vector.

Let's compute Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varepsilon} . For this

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \mathbf{E}(\mathbf{r},t) & =-\frac{1}{c}\frac{\partial \mathbf{A} }{\partial t} \\ & =-\frac{1}{c\sqrt{V}}\frac{\partial}{\partial t}\left[\alpha \boldsymbol{\lambda}e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)}+\alpha^{*} \boldsymbol{\lambda}^{*} e^{-i(\mathbf{k}\cdot\mathbf{r}-\omega t)}\right] \\ & =-\frac{i\omega}{c\sqrt{V}}\left[-\alpha \boldsymbol{\lambda} e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)}+\alpha^{*} \boldsymbol{\lambda}^{*} e^{-i(\mathbf{k}\cdot\mathbf{r}-\omega t)}\right] \\ \mathbf{E}^{2}(\mathbf{r},t) & = -\frac{\omega^{2}}{c^{2}V}\left[\alpha^{2} \boldsymbol{\lambda}^{2} e^{2i(\mathbf{k}\cdot\mathbf{r}-\omega t)}-\alpha\alpha^{*}\boldsymbol{\lambda}\cdot\boldsymbol{\lambda}^{*}-\alpha^{*}\alpha\boldsymbol{\lambda}^{*}\cdot\boldsymbol{\lambda}+\alpha^{*2} \boldsymbol{\lambda}^{*2} e^{-2i(\mathbf{k}\cdot\mathbf{r}-\omega t)}\right] \\ \end{align} }

Taking the average, the oscillating terms will disappear. Then we have

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \mathbf{E}^{2}(\mathbf{r}) & = \frac{\omega^{2}}{c^{2}V}\left[\alpha\alpha^{*}+\alpha^{*}\alpha\right] \\ &=2\frac{\omega^{2}}{c^{2}V}|\alpha|^2 \\ \end{align} }

It is well known that for plane waves Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{B}=\mathbf{n}\times \mathbf{E} } , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{n}} is the direction of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{k}} . This clearly shows that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{B}^{2}=\mathbf{E}^{2}} . However let's see this explicitly:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \mathbf{B}(\mathbf{r},t) & =\nabla \times\mathbf{A}\\ & =\nabla \left[\alpha \boldsymbol{\lambda}\frac{e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)}}{\sqrt{V}}+\alpha^{*} \boldsymbol{\lambda}^{*} \frac{e^{-i(\mathbf{k}\cdot\mathbf{r}-\omega t)}}{\sqrt{V}}\right] \\ \end{align} }

Each component is given by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \mathbf{B}_{i}(\mathbf{r},t)& =\frac{1}{{\sqrt{V}}}\left[\alpha \varepsilon _{ijk}\partial_{j} \left(\boldsymbol{\lambda}_{k}e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)}\right)+\alpha^{*} \varepsilon _{ijk}\partial_{j} \left(\boldsymbol{\lambda}^{*}_{k}e^{-i(\mathbf{k}\cdot\mathbf{r}-\omega t)}\right)\right] \\ & =\frac{i}{{\sqrt{V}}}\left[\alpha \varepsilon _{ijk}\mathbf{k}_{j} \boldsymbol{\lambda}_{k}e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)}-\alpha^{*} \varepsilon _{ijk}\mathbf{k}_{j} \boldsymbol{\lambda}^{*}_{k}e^{-i(\mathbf{k}\cdot\mathbf{r}-\omega t)}\right] \\ \end{align} }

Then

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \mathbf{B}(\mathbf{r},t) & =\frac{i}{{\sqrt{V}}}\left[\alpha \mathbf{k}\times\boldsymbol{\lambda}e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)}-\alpha^{*} \mathbf{k}\times\boldsymbol{\lambda}^{*} e^{-i(\mathbf{k}\cdot\mathbf{r}-\omega t)}\right] \\ \mathbf{B}^{2}(\mathbf{r},t) & =\frac{-1}{{V}}\left[\alpha \mathbf{k}\times\boldsymbol{\lambda}e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)}-\alpha^{*} \mathbf{k}\times\boldsymbol{\lambda}^{*} e^{-i(\mathbf{k}\cdot\mathbf{r}-\omega t)}\right] \\ & =\frac{-1}{{V}}\left[\alpha^{2} (\mathbf{k}\times\boldsymbol{\lambda})^{2}e^{2i(\mathbf{k}\cdot\mathbf{r}-\omega t)}-\alpha \alpha^{*}(\mathbf{k}\times\boldsymbol{\lambda})\cdot(\mathbf{k}\times\boldsymbol{\lambda}^{*})-\alpha^{*} \alpha(\mathbf{k}\times\boldsymbol{\lambda}^{*})\cdot(\mathbf{k}\times\boldsymbol{\lambda})+\alpha^{*2} (\mathbf{k}\times\boldsymbol{\lambda}^{*})^{2} e^{-2i(\mathbf{k}\cdot\mathbf{r}-\omega t)}\right] \\ \end{align} }

Again taking the average the oscillating terms vanish. Then we have

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \mathbf{B}^{2}(\mathbf{r}) & =\frac{1}{{V}}\left[\alpha \alpha^{*}+\alpha^{*} \alpha\right](\mathbf{k}\times\boldsymbol{\lambda})\cdot(\mathbf{k}\times\boldsymbol{\lambda}^{*}) \\ & =\frac{1}{{V}}\left[\alpha \alpha^{*}+\alpha^{*} \alpha\right][\mathbf{k}^{2}(\boldsymbol{\lambda}\cdot\boldsymbol{\lambda^{*}})-(\mathbf{k}\cdot\boldsymbol{\lambda^{*}})\cdot(\mathbf{k}\cdot\boldsymbol{\lambda^{*}})] \\ & =\frac{2}{{V}}|\alpha|^{2}\mathbf{k}^{2}\\ &=2\frac{\omega^{2}}{c^{2}V}|\alpha|^2 \\ &= \mathbf{E}^{2}(\mathbf{r},t)\\ \end{align} }

Finally the energy of this radiation is given by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \varepsilon &= \frac{1}{8\pi} \int d^{3}\mathbf{r} (\mathbf{E}^{2}+\mathbf{B}^{2}) \\ &=\frac{1}{4\pi} \int d^{3}\mathbf{r}\; \mathbf{E}^{2}\\ &=\frac{1}{4\pi} \int d^{3}\mathbf{r} \left(2\frac{\omega^{2}}{c^{2}V}|\alpha|^2\right)\\ &=\frac{\omega^{2}}{2\pi c^{2}}|\alpha|^2\\ \end{align}}

So far we have treated the potential Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(\mathbf{r},t)} as a combination of two waves with the same frequency. Now let's extend the discussion to any form of . To do this we can expand in a infinite series of Fourier:

To calculate the energy with use the fact that any exponential time-dependent term is in average zero. Therefore in the previous sum all cross terms with different vanishes. Then it is clear that

Then the energy is given by

Let's define the following quantities:

Notice that

Adding

Then the energy (in this case the Hamiltonian) can be written as

We end up with a collection of harmonic oscillators, each labeled by adn , whose frequencies depends on .


From classical mechanics to quatum mechanics for radiation



As usual we proceed to do the canonical quantization:



Where last are quantum operators. The Hamiltonian can be written as



The classical potential can be written as


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \underbrace{A(\mathbf{r},t)=\sum_{\mathbf{k}\boldsymbol{\lambda}} \left[A_{\mathbf{k}\boldsymbol{\lambda}} \boldsymbol{\lambda}\frac{e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)}}{\sqrt{V}}+A_{\mathbf{k}\boldsymbol{\lambda}}^{*} \boldsymbol{\lambda}^{*} \frac{e^{-i(\mathbf{k}\cdot\mathbf{r}-\omega t)}}{\sqrt{V}}\right]}_\textrm{Classical Vector potential}\;\;\;\longrightarrow\;\;\; \underbrace{\mathbf{A}_{int}(\mathbf{r},t)=\sqrt{\frac{2\pi \hbar}{\omega_{\mathbf{k}}}}c\sum_{\mathbf{k}\boldsymbol{\lambda}} \left[\mathbf{a}_{\mathbf{k}\boldsymbol{\lambda}} \boldsymbol{\lambda}\frac{e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)}}{\sqrt{V}}+\mathbf{a}_{\mathbf{k}\boldsymbol{\lambda}}^{\dagger} \boldsymbol{\lambda}^{*} \frac{e^{-i(\mathbf{k}\cdot\mathbf{r}-\omega t)}}{\sqrt{V}}\right]}_\textrm{Quantum Operator} }


Notice that the quantum operator is time dependent. Therefor we can identify it as the field operator in interaction representation. (That's the reason to label it with int). Let's find the Schrodinger representation of the field operator:


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \mathbf{A}(\mathbf{r})&=e^{-\frac{i}{\hbar}\mathbf{H}_{rad}t}\mathbf{A}_{int}(\mathbf{r},t)e^{\frac{i}{\hbar}\mathbf{H}_{rad}t}\\ &=e^{-\frac{i}{\hbar}\mathbf{H}_{rad}t}\left[\sqrt{\frac{2\pi \hbar}{\omega_{\mathbf{k}}}}c\sum_{\mathbf{k}\boldsymbol{\lambda}} \left[\mathbf{a}_{\mathbf{k}\boldsymbol{\lambda}} \boldsymbol{\lambda}\frac{e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)}}{\sqrt{V}}+\mathbf{a}_{\mathbf{k}\boldsymbol{\lambda}}^{\dagger} \boldsymbol{\lambda}^{*} \frac{e^{-i(\mathbf{k}\cdot\mathbf{r}-\omega t)}}{\sqrt{V}}\right]\right]e^{\frac{i}{\hbar}\mathbf{H}_{rad}t}\\ &=\sqrt{\frac{2\pi \hbar}{\omega_{\mathbf{k}}}}c\sum_{\mathbf{k}\boldsymbol{\lambda}} \left[\left[e^{-\frac{i}{\hbar}\mathbf{H}_{rad}t} \mathbf{a}_{\mathbf{k}\boldsymbol{\lambda}}e^{\frac{i}{\hbar}\mathbf{H}_{rad}t}\right] \boldsymbol{\lambda}\frac{e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)}}{\sqrt{V}}+\left[ e^{-\frac{i}{\hbar}\mathbf{H}_{rad}t}\mathbf{a}_{\mathbf{k}\boldsymbol{\lambda}}^{\dagger} e^{\frac{i}{\hbar}\mathbf{H}_{rad}t}\right] \boldsymbol{\lambda}^{*} \frac{e^{-i(\mathbf{k}\cdot\mathbf{r}-\omega t)}}{\sqrt{V}}\right]\\ &=\sqrt{\frac{2\pi \hbar}{\omega_{\mathbf{k}}}}c\sum_{\mathbf{k}\boldsymbol{\lambda}} \left[\left[\mathbf{a}_{\mathbf{k}\boldsymbol{\lambda}}e^{i\omega t}\right] \boldsymbol{\lambda}\frac{e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)}}{\sqrt{V}}+\left[ \mathbf{a}_{\mathbf{k}\boldsymbol{\lambda}}^{\dagger} e^{-i\omega t}\right] \boldsymbol{\lambda}^{*} \frac{e^{-i(\mathbf{k}\cdot\mathbf{r}-\omega t)}}{\sqrt{V}}\right]\\ &=\sqrt{\frac{2\pi \hbar}{\omega_{\mathbf{k}}}}c\sum_{\mathbf{k}\boldsymbol{\lambda}} \left[\mathbf{a}_{\mathbf{k}\boldsymbol{\lambda}} \boldsymbol{\lambda}\frac{e^{i\mathbf{k}\cdot\mathbf{r}}}{\sqrt{V}}+\mathbf{a}_{\mathbf{k}\boldsymbol{\lambda}}^{\dagger} \boldsymbol{\lambda}^{*} \frac{e^{-i\mathbf{k}\cdot\mathbf{r}}}{\sqrt{V}}\right]\\ \end{align}}


COMMENTS

  • The meaning of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{H}_{radiation}} is as following: The classical electromagnetic field is quantized. This quantum field exist even if there is not any source. This means that the vacuum is a physical object who can interact with matter. In classical mechanics this doesn't occur because, fields are created by sources.
  • Due to this, the vacuum has to be treated as a quantum dynamical object. Therefore we can define to this object a quantum state.
  • The perturbation of this quantum field is called photon (it is called the quanta of the electromagnetic field).


ANALYSIS OF THE VACUUM AT GROUND STATE

Let's call Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |0\rangle} the ground state of the vacuum. The following can be stated:

  • The energy of the ground state is infinite. To see this notice that for ground state we have Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \mathbf{H}_{radiation}&=\sum_{\mathbf{k}\boldsymbol{\lambda}} \frac{1}{2} \hbar \omega_{\mathbf{k}}=\infin \end{align}}
  • The state Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \;\mathbf{a}^{\dagger}_{\mathbf{k} \boldsymbol{\lambda}}|0\rangle} represent an exited state of the vacuum with energy Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hbar \omega_{\mathbf{k}}(1+1/2)} . This means that the extra energy Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hbar \omega_{\mathbf{k}}} is carried by a single photon. Therefore Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{a}^{\dagger}_{\mathbf{k} \boldsymbol{\lambda}}} represent the creation operator of one single photon with energy Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hbar \omega_{\mathbf{k}}} . In the same reasoning, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{a}_{\mathbf{k} \boldsymbol{\lambda}}} represent the annihilation operator of one single photon.
  • Consider the following normalized state of the vacuum: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{\sqrt{2}}\mathbf{a}^{\dagger}_{\mathbf{k} \boldsymbol{\lambda}}\mathbf{a}^{\dagger}_{\mathbf{k} \boldsymbol{\lambda}}|0\rangle} . At the first glance we may think that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{a}^{\dagger}_{\mathbf{k} \boldsymbol{\lambda}}\mathbf{a}^{\dagger}_{\mathbf{k} \boldsymbol{\lambda}}} creates a single photon with energy Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\hbar \omega_{\mathbf{k}}} . However this interpretation is forbidden in our model. Instead, this operator will create two photons each of the carryng the energy Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hbar \omega_{\mathbf{k}}} .

    Proof

    Suppose that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{a}^{\dagger}_{\mathbf{k} \boldsymbol{\lambda}}\mathbf{a}^{\dagger}_{\mathbf{k} \boldsymbol{\lambda}}} creates a single photon with energy Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\hbar \omega_{\mathbf{k}}} . We can find an operator Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{a}^{\dagger}_{\mathbf{k'} \boldsymbol{\lambda}}} who can create a photon with the same energy Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\hbar \omega_{\mathbf{k}}} . This means that

    Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{\sqrt{2}}\mathbf{a}^{\dagger}_{\mathbf{k} \boldsymbol{\lambda}}\mathbf{a}^{\dagger}_{\mathbf{k} \boldsymbol{\lambda}}|0\rangle=\mathbf{a}^{\dagger}_{\mathbf{k'} \boldsymbol{\lambda}}|0\rangle \;\;\;\longrightarrow\;\;\;\frac{1}{\sqrt{2}}\mathbf{a}^{\dagger}_{\mathbf{k} \boldsymbol{\lambda}}\mathbf{a}^{\dagger}_{\mathbf{k} \boldsymbol{\lambda}}=\mathbf{a}^{\dagger}_{\mathbf{k'} \boldsymbol{\lambda}}\;\;\;\longrightarrow\;\;\;\frac{1}{\sqrt{2}}\mathbf{a}_{\mathbf{k} \boldsymbol{\lambda}}\mathbf{a}_{\mathbf{k} \boldsymbol{\lambda}}=\mathbf{a}_{\mathbf{k'} \boldsymbol{\lambda}} }

    using this we can see that

    Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \left[\mathbf{a}_{\mathbf{k} \boldsymbol{\lambda}}\mathbf{a}_{\mathbf{k} \boldsymbol{\lambda}},\mathbf{a}^{\dagger}_{\mathbf{k'} \boldsymbol{\lambda}}\right]&=0\\ \left[\mathbf{a}_{\mathbf{k'} \boldsymbol{\lambda}},\mathbf{a}^{\dagger}_{\mathbf{k'} \boldsymbol{\lambda}}\right]&=0\\ \end{align}}

    Since Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left[\mathbf{a}_{\mathbf{k'} \boldsymbol{\lambda}},\mathbf{a}^{\dagger}_{\mathbf{k'} \boldsymbol{\lambda}}\right]=1} , the initial assumption is wrong, namely:

    Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{\sqrt{2}}\mathbf{a}^{\dagger}_{\mathbf{k} \boldsymbol{\lambda}}\mathbf{a}^{\dagger}_{\mathbf{k} \boldsymbol{\lambda}}|0\rangle \ne \mathbf{a}^{\dagger}_{\mathbf{k'} \boldsymbol{\lambda}}|0\rangle }

    This means that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{a}^{\dagger}_{\mathbf{k} \boldsymbol{\lambda}}\mathbf{a}^{\dagger}_{\mathbf{k} \boldsymbol{\lambda}} } cannot create a single photon with energy Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\hbar \omega_{\mathbf{k}}} . Instead it will create two photons each of them with energy Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hbar \omega_{\mathbf{k}\blacksquare}}


ALGEBRA OF VACUUM STATES

A general vacuum state can be written as

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |n_{\mathbf{k_{1}} \boldsymbol{\lambda_{1}}};n_{\mathbf{k_{2}} \boldsymbol{\lambda_{2}}};...;n_{\mathbf{k_{i}} \boldsymbol{\lambda_{i}}};...\rangle }

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n_{\mathbf{k_{i}} \boldsymbol{\lambda_{i}}}} is the number of photons in the state Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{k_{i}} \boldsymbol{\lambda_{i}}} which exist in the vacuum. Using our knowledge of harmonic oscillator we conclude that this state can be written as

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |n_{\mathbf{k_{1}} \boldsymbol{\lambda_{1}}};n_{\mathbf{k_{2}} \boldsymbol{\lambda_{2}}};...;n_{\mathbf{k_{i}} \boldsymbol{\lambda_{i}}};...\rangle=\prod_{\mathbf{k_{j}} \boldsymbol{\lambda_{j}}}\frac{( \mathbf{a}^{\dagger}_{\mathbf{k} \boldsymbol{\lambda}})^{n_{\mathbf{k_{j}} \boldsymbol{\lambda_{j}}}}}{\sqrt{n_{\mathbf{k_{j}} \boldsymbol{\lambda_{j}}}!}}|0\rangle }

Also it is clear that

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{a}^{\dagger}_{\mathbf{k_{i}} \boldsymbol{\lambda_{i}}}|n_{\mathbf{k_{1}} \boldsymbol{\lambda_{1}}};n_{\mathbf{k_{2}} \boldsymbol{\lambda_{2}}};...;n_{\mathbf{k_{i}} \boldsymbol{\lambda_{i}}};...\rangle=\sqrt{n_{\mathbf{k_{i}} \boldsymbol{\lambda_{i}}}+1}|n_{\mathbf{k_{1}} \boldsymbol{\lambda_{1}}};n_{\mathbf{k_{2}} \boldsymbol{\lambda_{2}}};...;n_{\mathbf{k_{i}} \boldsymbol{\lambda_{i}}}+1;...\rangle }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{a}_{\mathbf{k_{i}} \boldsymbol{\lambda_{i}}}|n_{\mathbf{k_{1}} \boldsymbol{\lambda_{1}}};n_{\mathbf{k_{2}} \boldsymbol{\lambda_{2}}};...;n_{\mathbf{k_{i}} \boldsymbol{\lambda_{i}}};...\rangle=\sqrt{n_{\mathbf{k_{i}} \boldsymbol{\lambda_{i}}}}|n_{\mathbf{k_{1}} \boldsymbol{\lambda_{1}}};n_{\mathbf{k_{2}} \boldsymbol{\lambda_{2}}};...;n_{\mathbf{k_{i}} \boldsymbol{\lambda_{i}}}-1;...\rangle }


Matter + Radiation: Electron bounded to a nucleus with transverse radiation field



The Hamiltonian of the system can be written as:


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \mathbf{H}&=\mathbf{H}_{particle+radiation}+\mathbf{H}_{radiation}\\ &=\frac{(\mathbf{P}-\frac{e}{c}\mathbf{A}(\mathbf{r}))^{2}}{2m}+\mathbf{V(\mathbf{r})}+\sum_{\mathbf{k}\boldsymbol{\lambda}}\hbar \omega_{\mathbf{k}}(\mathbf{a}^{\dagger}_{\mathbf{k} \boldsymbol{\lambda}} \mathbf{a}_{\mathbf{k} \boldsymbol{\lambda}}+\frac{1}{2}) \end{align}}


Notice that in this writing the Hamiltonian is time independent. The field operator Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{A}(\mathbf{r})} must be time independent. The state of whole system can be written as



The Schrodinger equation can be transformed to interaction representation (all operators with be time dependent). This transformation is give by:


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} |\psi\rangle&=e^{-\frac{i}{\hbar}\mathbf{H}_{rad}t}|\chi\rangle\\ |\chi\rangle&=e^{-\frac{i}{\hbar}\mathbf{H}_{par}t}|\varphi\rangle \;\;\;\longleftarrow\;\;\; \mathbf{H}_{par}=\frac{\mathbf{P}^{2}}{2m}+\mathbf{V(\mathbf{r})}\\ \end{align}}


Then


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} i\hbar \frac{\partial }{\partial t }|\psi\rangle &=[\mathbf{H}_{par+rad}+\mathbf{H}_{rad}] |\psi\rangle \\ i\hbar \frac{\partial }{\partial t }e^{-\frac{i}{\hbar}\mathbf{H}_{rad}t}|\chi\rangle &=[\mathbf{H}_{par+rad}+\mathbf{H}_{rad}] e^{-\frac{i}{\hbar}\mathbf{H}_{rad}t}|\chi\rangle \\ \mathbf{H}_{rad} e^{-\frac{i}{\hbar}\mathbf{H}_{rad}t}|\chi\rangle +i\hbar e^{-\frac{i}{\hbar}\mathbf{H}_{rad}t} \frac{\partial }{\partial t }|\chi\rangle &=[\mathbf{H}_{par+rad}+\mathbf{H}_{rad}] e^{-\frac{i}{\hbar}\mathbf{H}_{rad}t}|\chi\rangle \\ i\hbar \frac{\partial }{\partial t }|\chi\rangle &=e^{\frac{i}{\hbar}\mathbf{H}_{rad}t}\mathbf{H}_{par+rad} e^{-\frac{i}{\hbar}\mathbf{H}_{rad}t}|\chi\rangle \\ i\hbar \frac{\partial }{\partial t }|\chi\rangle &=e^{\frac{i}{\hbar}\mathbf{H}_{rad}t}\left[ \frac{(\mathbf{P}-\frac{e}{c}\mathbf{A}(\mathbf{r}))^{2}}{2m}+\mathbf{V(\mathbf{r})}\right ] e^{-\frac{i}{\hbar}\mathbf{H}_{rad}t}|\chi\rangle \\ i\hbar \frac{\partial }{\partial t }|\chi\rangle &=\left[ \frac{e^{\frac{i}{\hbar}\mathbf{H}_{rad}t}(\mathbf{P}-\frac{e}{c}\mathbf{A}(\mathbf{r}))^{2}e^{-\frac{i}{\hbar}\mathbf{H}_{rad}t}}{2m}+\mathbf{V}_{int}(\mathbf{r})\right ] |\chi\rangle \\ i\hbar \frac{\partial }{\partial t }|\chi\rangle &=\left[ \frac{(\mathbf{P}-\frac{e}{c}\mathbf{A}_{int}(\mathbf{r},t))^{2}}{2m}+\mathbf{V}(\mathbf{r})\right ] |\chi\rangle \\ i\hbar \frac{\partial }{\partial t }|\chi\rangle &=\left[\left(\frac{\mathbf{P}^{2}}{2m} +\mathbf{V}(\mathbf{r})\right)-2\frac{e}{2mc}\mathbf{A}_{int}(\mathbf{r},t)\mathbf{P}+\frac{e^{2}} {2mc^{2}} \mathbf{A}^{2}_{int}(\mathbf{r},t) \right ] |\chi\rangle \\ i\hbar \frac{\partial }{\partial t }e^{-\frac{i}{\hbar}\mathbf{H}_{par}t}|\varphi\rangle &=\left[\left(\frac{\mathbf{P}^{2}}{2m} +\mathbf{V}(\mathbf{r})\right)-2\frac{e}{2mc}\mathbf{A}_{int}(\mathbf{r},t)\mathbf{P}+\frac{e^{2}} {2mc^{2}} \mathbf{A}^{2}_{int}(\mathbf{r},t) \right ] e^{-\frac{i}{\hbar}\mathbf{H}_{par}t}|\varphi\rangle \\ \mathbf{H}_{par} e^{-\frac{i}{\hbar}\mathbf{H}_{rad}t}|\varphi\rangle +i\hbar e^{-\frac{i}{\hbar}\mathbf{H}_{rad}t} \frac{\partial }{\partial t }|\varphi\rangle &=\left[\mathbf{H}_{par}-\frac{e}{mc}\mathbf{A}_{int}(\mathbf{r},t)\mathbf{P}+\frac{e^{2}} {2mc^{2}} \mathbf{A}^{2}_{int}(\mathbf{r},t) \right ] e^{-\frac{i}{\hbar}\mathbf{H}_{par}t}|\varphi\rangle \\ i\hbar e^{-\frac{i}{\hbar}\mathbf{H}_{rad}t} \frac{\partial }{\partial t }|\varphi\rangle &=\left[-\frac{e}{mc}\mathbf{A}_{int}(\mathbf{r},t)\mathbf{P}+\frac{e^{2}} {2mc^{2}} \mathbf{A}^{2}_{int}(\mathbf{r},t) \right ] e^{-\frac{i}{\hbar}\mathbf{H}_{par}t}|\varphi\rangle \\ i\hbar \frac{\partial }{\partial t }|\varphi\rangle &=e^{\frac{i}{\hbar}\mathbf{H}_{rad}t} \left[-\frac{e}{mc}\mathbf{A}_{int}(\mathbf{r},t)\mathbf{P}+\frac{e^{2}} {2mc^{2}} \mathbf{A}^{2}_{int}(\mathbf{r},t) \right ] e^{-\frac{i}{\hbar}\mathbf{H}_{par}t}|\varphi\rangle \\ i\hbar \frac{\partial }{\partial t }|\varphi\rangle &= \left[-\frac{e}{mc}\mathbf{A}_{int}(\mathbf{e^{\frac{i}{\hbar}\mathbf{H}_{rad}t}re^{-\frac{i}{\hbar}\mathbf{H}_{rad}t}},t)\mathbf{P}_{int}(t)+\frac{e^{2}} {2mc^{2}} \mathbf{A}^{2}_{int}(\mathbf{e^{\frac{i}{\hbar}\mathbf{H}_{rad}t}re^{-\frac{i}{\hbar}\mathbf{H}_{rad}t}},t) \right ] |\varphi\rangle \\ i\hbar \frac{\partial }{\partial t }|\varphi\rangle &= \left[ -\frac{e}{mc}\mathbf{A}_{int}(\mathbf{r}_{int}(t),t)\mathbf{P}_{int}(t)+\frac{e^{2}} {2mc^{2}} \mathbf{A}^{2}_{int}(\mathbf{r}_{int}(t),t) \right ] |\varphi\rangle \\ \end{align}}

Non-perturbative methods

One important method in approximate determination of wave function and eigenvalue is Variational Principle. Variation method is very general one that it can be used whenever the equations can be put into variational form.

Spin

Spin 1/2 Angular Momentum

The angular momentum of a stationary spin 1/2 particle is found to be quantized to the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pm\frac{\hbar}{2}} regardless of the direction of the axis chosen to measure the angular momentum. There is a vector operator Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textbf{\overrightarrow{S}}=(S_{x}, S_{y}, S_{z})} when projected along an arbitrary axis satisfies the following equations:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overrightarrow{S}\cdot\hat{m}|\hat{m}\uparrow\rangle = \dfrac{\hbar}{2}|\hat{m}\uparrow\rangle}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overrightarrow{S}\cdot\hat{m}|\hat{m}\downarrow\rangle = \dfrac{-\hbar}{2}|\hat{m}\downarrow\rangle}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\hat{m}\uparrow\rangle} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\hat{m}\downarrow\rangle} form a complete basis, which means that any state Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\hat{n}\uparrow\rangle} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\hat{n}\downarrow\rangle} can be expanded as a linear combination of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\hat{m}\uparrow\rangle} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\hat{m}\downarrow\rangle} .

The spin angular momentum operator obeys the standard commutation relations

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [S_{\mu}, S_{\nu}]=i\hbar\epsilon_{\mu\nu\lambda}S_{\lambda}\Rightarrow [S_{x}, S_{z}]=-i\hbar S_{y}}

The most commonly used basis is the one which diagonalizes Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overrightarrow{S}\cdot \hat{z} =S_{z}} .

By acting on the states Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\hat{z}\uparrow\rangle} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\hat{z}\downarrow\rangle} with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_{z}} , we find Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_{z}|\hat{z}\uparrow\rangle = \dfrac{\hbar}{2}|\hat{z}\uparrow\rangle} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_{z}|\hat{z}\downarrow\rangle = \dfrac{-\hbar}{2}|\hat{z}\downarrow\rangle}

Now by acting to the left with another state, we can form a 2x2 matrix.

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_{z}=\left( \begin{array}{ll} \langle\hat{z}\uparrow|S_{z}|\hat{z}\uparrow\rangle & \langle\hat{z}\uparrow|S_{z}|\hat{z}\downarrow\rangle \\ \langle\hat{z}\downarrow|S_{z}|\hat{z}\uparrow\rangle & \langle\hat{z}\downarrow|S_{z}|\hat{z}\downarrow\rangle \end{array} \right)=\left(\begin{array}{ll} \hbar/2 & 0 \\ 0 & -\hbar/2 \end{array}\right)=\dfrac{\hbar}{2}\left( \begin{array}{ll} 1 & 0 \\ 0 & -1 \end{array}\right)=\dfrac{\hbar}{2}\sigma_{z}}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma_{z}} is the z Pauli spin matrix. Repeating the steps (or commutator relations), we can solve for the x and y directions.

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_{x}=\dfrac{\hbar}{2}\left(\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array} \right)=\dfrac{\hbar}{2}\sigma_{x}}


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_{y}=\dfrac{\hbar}{2}\left( \begin{array}{ll} 0 & -i \\ i & 0 \end{array} \right)=\dfrac{\hbar}{2}\sigma_{y}}

Properties of the Pauli Spin Matrices

Each Pauli matrix squared produces the unity matrix

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma_{x}^2=\sigma_{y}^2=\sigma_{z}^2=\left( \begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array} \right)}

The commutation relation is as follows

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [\sigma_{\mu}, \sigma_{\nu}]=2i\epsilon_{\mu\nu\lambda}\sigma_{\lambda}}

and the anticommutator relation

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle { \sigma_{\mu}, \sigma_{\nu} }=\sigma_{\mu}\sigma_{\nu}+\sigma_{\nu}\sigma_{\mu}=2\delta_{\mu\nu} \left( \begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array} \right)}

For example, if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma_{\mu}\sigma_{\nu}=-\sigma_{\nu}\sigma_{\mu}}

Then

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma_{\mu}\sigma_{\nu}=\dfrac{1}{2}[\sigma_{\mu}, \sigma_{\nu}]+\dfrac{1}{2}{\sigma_{\mu}, \sigma_{\nu}}=i\epsilon_{\mu\nu\lambda}\sigma_{\lambda}+\delta_{\mu\nu}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_{\mu}S_{\nu}=\dfrac{\hbar^2}{4}\delta_{\mu\nu}+\dfrac{i\hbar}{2}\epsilon_{\mu\nu\lambda}S_{\lambda}}

The above equation is true for 1/2 spins only!!

In general

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (a \cdot \sigma)(b\cdot\sigma)=(a_{x}\sigma_{x}+a_{y}\sigma_{y}+a_{z}\sigma_{z})(b_{x}\sigma_{x}+b_{y}\sigma_{y}+b_{z}\sigma_{z})=a_{\mu}\sigma_{mu}b_{\nu}\sigma_{nu}=a_{\mu}b_{\nu}\sigma_{mu}\sigma_{nu}=a_{\mu}b_{\nu} \left( \left( \begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array} \right) \delta_{\mu\nu}+i\epsilon_{\mu\nu\lambda}\sigma_{\lambda} \right) = \left( \begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array} \right) a\cdot b+i(a\times b)\cdot\sigma}

Finally, any 2x2 matrix can be written in the form

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M=\alpha \left( \begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array} \right) +\beta \cdot \sigma= \left( \begin{array}{ll} M_{11} & M_{12} \\ M_{21} & M_{22} \end{array} \right) }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Rightarrow\alpha=\frac{1}{2}(M_{11}+M_{22})}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Rightarrow\beta_{x}=\frac{1}{2}(M_{12}+M_{21})}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Rightarrow\beta_{y}=\frac{i}{2}(M_{12}-M_{21})}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Rightarrow\beta_{z}=\frac{1}{2}(M_{11}-M_{22})}

for infinitesimal Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{n}=\hat{m}+\overrightarrow{\alpha}x \hat{m} + O(\alpha^2)}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overrightarrow{S}\cdot\hat{n}=\overrightarrow{S}\cdot\hat{m}+\overrightarrow{S}\cdot(\overrightarrow{\alpha} \times \overrightarrow{m})}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_{\mu}\hat{n_{\mu}}=S_{\mu}\hat{m_{\mu}}+S_{\mu}\epsilon_{\mu\nu\lambda}\alpha_{\nu}\hat{m_{\lambda}}}

Note that using the previous developed formulas, we find that

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_{\mu}\epsilon_{\mu\nu\lambda}=\dfrac{1}{i\hbar}[S_{\nu}, S_{\lambda}]\Rightarrow \overrightarrow{S}\cdot\hat{n}=\overrightarrow{S}\cdot\hat{m}+\dfrac{1}{i\hbar}[\overrightarrow{\alpha}\cdot\overrightarrow{S}, \hat{m}\cdot\overrightarrow{S}]=\overrightarrow{S}\cdot\hat{m}+\dfrac{1}{i\hbar}[\overrightarrow{S}\cdot\hat{m}, \overrightarrow{S}\cdot\overrightarrow{\alpha}]}

To this order in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overrightarrow{\alpha}} :

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overrightarrow{S}\cdot\hat{n}=e^{-\frac{i}{\hbar}\overrightarrow{S}\cdot\overrightarrow{\alpha}} (\overrightarrow{S}\cdot\hat{m}) e^{\frac{i}{\hbar}\overrightarrow{S}\cdot\overrightarrow{\alpha}}}

for finite Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha } (correct for all orders)

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overrightarrow{S}\cdot\hat{n} \left( e^{-\frac{i}{\hbar}\overrightarrow{S}\cdot\overrightarrow{\alpha}} |\hat{m} \uparrow\rangle \right)= \dfrac{\hbar}{2}\left( e^{-\frac{i}{\hbar}\overrightarrow{S}\cdot\overrightarrow{\alpha}} |\hat{m} \uparrow\rangle \right)}

Addition of angular momenta

Total angular momentum is defined as

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overrightarrow{J}=\overrightarrow{J_{1}}+\overrightarrow{J_{2}}=\overrightarrow{J_{1}}\otimes\left( \begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right)+\left( \begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right)\otimes\overrightarrow{J_{2}}\Rightarrow|j_{1} m_{1}\rangle \otimes |j_{2} m_{2}\rangle=|j_{1} m_{1} j_{2} m_{2}\rangle}

where Hilbert space size is (2j+1)(2j+1).

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [J_{\mu}, J_{\nu}] = i\hbar\epsilon_{\mu\nu\lambda} J_{\lambda}} which can be used to find the eigenstate of J^2 and J_{z}.

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [J_{1,2}^2, J^2]= [J_{1,2}^2, J_{z}]=0 }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |jmj_{1}j_{2}\rangle: }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J^2=(\overrightarrow{J_{1}}+\overrightarrow{J_{2}})^2\Rightarrow J^2|j m j_{1} j_{2}\rangle=\hbar^2 j(j+1) |j m j_{1} j_{2}\rangle}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_{z}=(J_{1z}+J_{2z})\Rightarrow J_{z}|j m j_{1} j_{2}\rangle=\hbar m |j m j_{1} j_{2}\rangle}

for two particles, we can use

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_{1,2}^2|j m j_{1} j_{2}\rangle=\hbar^2 j_{1,2}(j_{1,2}+1) |j m j_{1} j_{2}\rangle }

For example, assume two spin 1/2 particles with basis Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\uparrow\uparrow\rangle, |\uparrow\downarrow\rangle, |\downarrow\uparrow\rangle, |\downarrow\downarrow\rangle} } . These states are eigenstates of J_{1}^1, J_{2}^2, J_{1z}, J_{2z}, but are they eigenstates of J^2 and J_{z}^2?

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J^2 |\uparrow\downarrow\rangle =(J_{x}^2+J_{y}^2+J_{z}^2)|\uparrow\downarrow\rangle = ((J_{x}+iJ_{y})(J_{x}-iJ_{y})+i[J_{x}, J_{y}] + J_{z}^2)|\uparrow\downarrow\rangle}

define Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_{\pm}=(J_{x}\pm iJ_{y})}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J^2 |\uparrow\downarrow\rangle =(J_{+}J_{-}-\hbar J_{z} + J_{z}^2)| \uparrow\downarrow\rangle = (((J_{1+}+J_{2+})(J_{1-}+J_{2-})+(J_{1z}+J_{2z})^2-\hbar (J_{1z}+J_{2z}) }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Rightarrow (J_{1z}+J_{2z}) |\uparrow\downarrow\rangle = (\dfrac{\hbar}{2}-\dfrac{\hbar}{2}) |\uparrow\downarrow\rangle = 0 }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Rightarrow J_{1+} |\uparrow\downarrow\rangle = J_{2+} |\downarrow\uparrow\rangle = J_{2-} |\uparrow\downarrow\rangle = 0 }

Which means that J^2 is not an eigenstate of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\uparrow\downarrow\rangle } .

Elementary applications of group theory in Quantum Mechanics

Irreducible tensor representations and Wigner-Eckart theorem

Elements of relativistic quantum mechanics