Dirac equation

From PhyWiki
Jump to navigation Jump to search

How to construct

Starting from the relativistic relation between energy and momentum:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E^2=\bold p^2c^2+m^2c^4}

or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E=c\sqrt{\bold p^2+m^2c^2}}

From this equation we can not directly replace Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E, \bold p} by the corresponding operators since we don't have the definition for the square root of an operator. Therefore, first we need to linearize this equation as follows:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E=c\sqrt{\bold p^2+m^2c^2}=c\sqrt{(p_{x}^2+p_{y}^2+p_{z}^2)+m^2c^2}=c(\alpha _{x}p_{x}+\alpha _{y}p_{y}+\alpha _{z}p_{z})+\beta mc^2}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold \alpha _{x},\alpha _{y},\alpha _{z}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold \beta} are some operators independent of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold p} .

From this it follows that:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c^2(p_{x}^2+p_{y}^2+p_{z}^2+m^2c^2)=[c(\alpha _{x}p_{x}+\alpha _{y}p_{y}+\alpha _{z}p_{z})+\beta mc^2] . [c(\alpha _{x}p_{x}+\alpha _{y}p_{y}+\alpha _{z}p_{z})+\beta mc^2]}

Expanding the left hand side and comparing it with the right hand side, we obtain the following conditions for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold \alpha _{x},\alpha _{y},\alpha _{z}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold \beta}  :

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha _{i}^2=\beta ^2=1}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold \alpha_ {i}\alpha_ {j}+\alpha_ {j}\alpha_ {i}={\alpha_ {i},\alpha_ {j}}=0}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold \alpha_ {i} \beta+\alpha_ {j} \beta={\alpha_ {i},\beta}=0}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i=1,2,3} corresponds to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x, y, z}