Klein-Gordon equation
How to construct
Starting from the relativistic connection between energy and momentum:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E^2=\bold p^2c^2+m^2c^4}
Substituting Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E \rightarrow i\hbar \frac{\partial}{\partial t}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold p \rightarrow -i\hbar \nabla} , we get Klein-Gordon equation for free particles as follows:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\hbar^2 \frac{\partial ^2\psi(\bold r, t)}{\partial t^2}=(-\hbar^2c^2\nabla^2+m^2c^4)\psi(\bold r, t)\qquad \qquad \qquad \qquad \qquad (9.2)}
Klein-Gordon can also be written as the following:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\square-K^2)\psi(\bold r, t)=0\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \;\;\;\;(9.3)}
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \square=\nabla^2-\frac{1}{c^2}\frac{\partial^2}{\partial t^2}} is d'Alembert operator and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle K=\frac{mc}{\hbar}} .
Equation (9.3) looks like a classical wave equation with an extra term Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle K^2} .
For a charged particle couple with electromagnetic field, Klein-Gordon equation is as follows:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [i\hbar \frac {\partial}{\partial t}-e\phi(\bold r, t)]^2\psi(\bold r, t)=([-i\hbar\nabla-\frac{e}{c}\bold A(\bold r, t)]^2c^2+m^2c^4)\psi(\bold r, t)}
Klein-Gordon is second order in time. Therefore, to see how the states of a system evolve in time we need to know both and at a certain time. While in nonrelativistic quantum mechanics, we only need
Also because the Klein-Gordon equation is second order in time, it has the solutions with either sign of energy . The negative energy solution of Klein-Gordon equation has a strange property that the energy decreases as the magnitude of the momentum increases. We will see that the negative energy solutions of Klein-Gordon equation describe antiparticles, while the positive energy solutions describe particles.
Continuity equation
Multiplying (9.2) by from the left, we get:
Multiplying the complex conjugate form of (9.2) by from the left, we get:
Subtracting (9.5) from (9.4), we get:
this give us the continuity equation:
where
From (9.6) we can see that the integral of the density over all space is conserved. However, is not positively definite. Therefore, we can neither interpret as the particle probability density nor can we interpret as the particle current. The appropriate interpretation are charge density for and electric current for since charge density and electric current can be either positive or negative.
Nonrelativistic limit
In nonrelativistic limit when or , we have:
So, the relativistic energy is different from classical energy by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle mc^2} , therefore, we can expect that if we write the solution of Klein-Gordon equation as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi e^{-imc^2t/\hbar}} and substitute it into Klein-Gordon equation, we will get Schrodinger equation for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold \psi} .
Indeed, doing so we get:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\hbar ^2\frac {\partial ^2 \psi}{\partial t^2}e^{-imc^2t/\hbar}+2\frac {\partial \psi}{\partial t}imc^2 \hbar e^{-imc^2t/\hbar}+\psi m^2c^4 e^{-imc^2t/\hbar}=-\hbar ^2 c^2\nabla ^2 \psi e^{-imc^2t/\hbar}+m^2c^4 \psi e^{-imc^2t/\hbar}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Rightarrow -\frac {\hbar ^2}{2mc^2} \frac{\partial ^2 \psi}{\partial t^2}+i\hbar \frac {\partial \psi}{\partial t}=-\frac {\hbar ^2}{2m}\nabla ^2 \psi}
The first term can be neglected in nonrelativistic limit, we get Schrodinger equation (for free particles:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i\hbar \frac {\partial \psi}{\partial t}=-\frac {\hbar ^2}{2m} \nabla ^2 \psi}