Using Brillouin-Wigner perturbation theory we will proof that Z = ⟨ N | N ⟩ − 1 = ∂ E n ∂ ϵ n {\displaystyle Z=\langle N|N\rangle ^{-1}={\frac {\partial E_{n}}{\partial \epsilon _{n}}}}
In this theory, the exact state and exact energy can be written as follows:
| N ⟩ = | n ⟩ + ∑ k = 1 + ∞ λ k ( ∑ m 1 ′ . . . ∑ m k ′ | m 1 ⟩ 1 E n − ϵ m 1 ⟨ m 1 | H ′ | m 2 ⟩ . 1 E n − ϵ m 2 ⟨ m 2 | H ′ | m 3 ⟩ . . . 1 E n − ϵ m k − 1 ⟨ m k − 1 | H ′ | m k ⟩ . 1 E n − ϵ m k ⟨ m k | H ′ | n ⟩ ) {\displaystyle |N\rangle =|n\rangle +\sum _{k=1}^{+\infty }\lambda ^{k}\left(\sum _{m_{1}}'...\sum _{m_{k}}'|m_{1}\rangle {\frac {1}{E_{n}-\epsilon _{m_{1}}}}\langle m_{1}|H'|m_{2}\rangle .{\frac {1}{E_{n}-\epsilon _{m_{2}}}}\langle m_{2}|H'|m_{3}\rangle ...{\frac {1}{E_{n}-\epsilon _{m_{k-1}}}}\langle m_{k-1}|H'|m_{k}\rangle .{\frac {1}{E_{n}-\epsilon _{m_{k}}}}\langle m_{k}|H'|n\rangle \right)}
E n = ϵ n + λ ⟨ n | H ′ | n ⟩ + ∑ k = 1 + ∞ λ k + 1 ( ∑ m 1 ′ . . . ∑ m k ′ ⟨ n | H ′ | m 1 ⟩ 1 E n − ϵ m 1 ⟨ m 1 | H ′ | m 2 ⟩ . 1 E n − ϵ m 2 ⟨ m 2 | H ′ | m 3 ⟩ . . . 1 E n − ϵ m k − 1 ⟨ m k − 1 | H ′ | m k ⟩ . 1 E n − ϵ m k ⟨ m k | H ′ | n ⟩ ) {\displaystyle E_{n}=\epsilon _{n}+\lambda \langle n|H'|n\rangle +\sum _{k=1}^{+\infty }\lambda ^{k+1}\left(\sum _{m_{1}}'...\sum _{m_{k}}'\langle n|H'|m_{1}\rangle {\frac {1}{E_{n}-\epsilon _{m_{1}}}}\langle m_{1}|H'|m_{2}\rangle .{\frac {1}{E_{n}-\epsilon _{m_{2}}}}\langle m_{2}|H'|m_{3}\rangle ...{\frac {1}{E_{n}-\epsilon _{m_{k-1}}}}\langle m_{k-1}|H'|m_{k}\rangle .{\frac {1}{E_{n}-\epsilon _{m_{k}}}}\langle m_{k}|H'|n\rangle \right)}