$$a=b$$
∇ ⋅ B → = 0 {\displaystyle \nabla \cdot {\overrightarrow {B}}=0} (posted by TerriC, Group 2)
e i θ = c o s ( θ ) + i s i n ( θ ) {\displaystyle e^{i\theta }=cos(\theta )+isin(\theta )} (Zach McDargh)
f λ = c {\displaystyle f\lambda =c}
r = p 1 + ε ⋅ cos θ {\displaystyle r={\frac {p}{1+\varepsilon \cdot \cos \theta }}} (posted by KimberlyWynne 19:05, 29 August 2009 (EDT))
x = − b ± b 2 − 4 a c 2 a {\displaystyle x={\frac {-b\pm {\sqrt {b^{2}-4ac}}}{2a}}} (Sandy Simmons)
e i π + 1 = 0 {\displaystyle e^{i\pi }+1=0} (Steve Honeywell)
f = ⟨ P , Q , R ⟩ {\displaystyle f=\langle P,Q,R\rangle }
∇ f = ∂ f ∂ x P + ∂ f ∂ y Q + ∂ f ∂ z R {\displaystyle \nabla f={\partial f \over \partial x}P+{\partial f \over \partial y}Q+{\partial f \over \partial z}R} (Andrew Wray)
U = 0.5 k x 2 {\displaystyle U=0.5kx^{2}} (Ryan Taylor)
<math>\nabla^2\psi = \frac{1}{v^2}\frac{\partial^2\psi}{\partial t^2}