Question: In the angular momentum basis, compute ⟨ l , m | L x 2 | l , m ⟩ {\displaystyle \left\langle {l,m\left|{L_{x}^{2}}\right|l,m}\right\rangle } and ⟨ l , m | L x L y | l , m ⟩ {\displaystyle \left\langle {l,m\left|{L_{x}L_{y}}\right|l,m}\right\rangle } .
Solution:
Since L x = L + + L − 2 {\displaystyle L_{x}={\frac {L_{+}+L_{-}}{2}}} , we can obtain L x 2 {\displaystyle L_{x}^{2}} ;
L x 2 = 1 4 ( L + + L − ) 2 = 1 4 ( L + 2 − L − 2 + 2 L + L − + 2 L − L + ) {\displaystyle L_{x}^{2}={\frac {1}{4}}(L_{+}+L_{-})^{2}={\frac {1}{4}}(L_{+}^{2}-L_{-}^{2}+2L_{+}L_{-}+2L_{-}L_{+})}
By definition, L + 2 {\displaystyle L_{+}^{2}} and L − 2 {\displaystyle L_{-}^{2}} won't contribute because ⟨ l , m | L + 2 | l , m ⟩ = ⟨ l , m | l , m + 2 ⟩ = 0 {\displaystyle \left\langle {l,m\left|{L_{+}^{2}}\right|l,m}\right\rangle =\left\langle {l,m\left|{l,m+2}\right.}\right\rangle =0} and ⟨ l , m | L − 2 | l , m ⟩ = ⟨ l , m | l , m − 2 ⟩ = 0 {\displaystyle \left\langle {l,m\left|{L_{-}^{2}}\right|l,m}\right\rangle =\left\langle {l,m\left|{l,m-2}\right.}\right\rangle =0}
⟨ l , m | L x 2 | l , m ⟩ = 1 4 { ⟨ l , m | 2 L + L − + 2 L − L + | l , m ⟩ } {\displaystyle \left\langle {l,m\left|{L_{x}^{2}}\right|l,m}\right\rangle ={\frac {1}{4}}\left\lbrace {\left\langle {l,m\left|{2L_{+}L_{-}+2L_{-}L_{+}}\right|l,m}\right\rangle }\right\rbrace }
= 1 2 { ⟨ l , m | L + L − | l , m ⟩ + ⟨ l , m | L − L + | l , m ⟩ } {\displaystyle ={\frac {1}{2}}\left\lbrace {\left\langle {l,m\left|{L_{+}L_{-}}\right|l,m}\right\rangle +\left\langle {l,m\left|{L_{-}L_{+}}\right|l,m}\right\rangle }\right\rbrace }
= ℏ 2 l ( l + 1 ) − m ( m − 1 ) ⟨ l , m | L + | l , m − 1 ⟩ + ℏ 2 l ( l + 1 ) − m ( m + 1 ) ⟨ l , m | L − | l , m + 1 ⟩ {\displaystyle {\text{=}}{\frac {\hbar }{2}}{\sqrt {l(l+1)-m(m-1)}}\left\langle {l,m\left|{L_{+}}\right|l,m-1}\right\rangle +{\frac {\hbar }{2}}{\sqrt {l(l+1)-m(m+1)}}\left\langle {l,m\left|{L_{-}}\right|l,m+1}\right\rangle }
= ℏ 2 2 l ( l + 1 ) − m ( m − 1 ) l ( l + 1 ) − ( m − 1 ) m ⟨ l , m | l , m ⟩ + ℏ 2 2 l ( l + 1 ) − m ( m + 1 ) l ( l + 1 ) − ( m + 1 ) m ⟨ l , m | l , m ⟩ {\displaystyle {\text{=}}{\frac {\hbar ^{2}}{2}}{\sqrt {l(l+1)-m(m-1)}}{\sqrt {l(l+1)-(m-1)m}}\left\langle {l,m}\right|\left.{}{l,m}\right\rangle +{\frac {\hbar ^{2}}{2}}{\sqrt {l(l+1)-m(m+1)}}{\sqrt {l(l+1)-(m+1)m}}\left\langle {l,m}\right|\left.{}{l,m}\right\rangle }
= ℏ 2 2 { l ( l + 1 ) − m ( m − 1 ) + l ( l + 1 ) − m ( m − 1 ) } {\displaystyle ={\frac {\hbar ^{2}}{2}}\left\lbrace {l(l+1)-m(m-1)+l(l+1)-m(m-1)}\right\rbrace } = ℏ 2 2 { 2 l ( l + 1 ) − 2 m 2 } {\displaystyle ={\frac {\hbar ^{2}}{2}}\left\lbrace {2l(l+1)-2m^{2}}\right\rbrace }
= ℏ 2 ( l ( l + 1 ) − m 2 ) {\displaystyle =\hbar ^{2}(l(l+1)-m^{2})}
L x L y = L + + L − 2 L + − L − 2 i {\displaystyle L_{x}L_{y}={\frac {L_{+}+L_{-}}{2}}{\frac {L_{+}-L_{-}}{2i}}}
= 1 4 i ( L + + L − ) ( L + − L − ) = 1 4 i { L + 2 − L − 2 − L + L − + L − L + } {\displaystyle ={\frac {1}{4i}}(L_{+}+L_{-})(L_{+}-L_{-})={\frac {1}{4i}}\left\lbrace {L_{+}^{2}-L_{-}^{2}-L_{+}L_{-}+L_{-}L_{+}}\right\rbrace } Again, L + 2 {\displaystyle L_{+}^{2}} and L − 2 {\displaystyle L_{-}^{2}} won't contribute
= 1 4 i ⟨ l m | L − L + − L + L − | l m ⟩ = 1 4 i { ⟨ l m | L − L + | l m ⟩ − ⟨ l m | L + L − | l m ⟩ } {\displaystyle ={\frac {1}{4i}}\left\langle {lm\left|{L_{-}L_{+}-L_{+}L_{-}}\right|lm}\right\rangle ={\frac {1}{4i}}\left\lbrace {\left\langle {lm\left|{L_{-}L_{+}}\right|lm}\right\rangle -\left\langle {lm\left|{L_{+}L_{-}}\right|lm}\right\rangle }\right\rbrace }
= ℏ 4 i { l ( l + 1 ) − m ( m + 1 ) ⟨ l m | L − | l m + 1 ⟩ − l ( l + 1 ) − m ( m − 1 ) ⟨ l m | L + | l m − 1 ⟩ } {\displaystyle ={\frac {\hbar }{4i}}\left\lbrace {{\sqrt {l(l+1)-m(m+1)}}\left\langle {lm\left|{L_{-}}\right|lm+1}\right\rangle -{\sqrt {l(l+1)-m(m-1)}}\left\langle {lm\left|{L_{+}}\right|lm-1}\right\rangle }\right\rbrace }
= ℏ 2 4 i { l ( l + 1 ) − m ( m + 1 ) l ( l + 1 ) − ( m + 1 ) m ⟨ l m | l m ⟩ − l ( l + 1 ) − m ( m − 1 ) l ( l + 1 ) − ( m − 1 ) m ⟨ l m | l m ⟩ } {\displaystyle ={\frac {\hbar ^{2}}{4i}}\left\lbrace {{\sqrt {l(l+1)-m(m+1)}}{\sqrt {l(l+1)-(m+1)m}}\left\langle {lm}\right|\left.{}{lm}\right\rangle -{\sqrt {l(l+1)-m(m-1)}}{\sqrt {l(l+1)-(m-1)m}}\left\langle {lm}\right|\left.{}{lm}\right\rangle }\right\rbrace }
= ℏ 2 4 i ( l ( l + 1 ) − m 2 − m − l ( l + 1 ) + m 2 − m ) {\displaystyle ={\frac {\hbar ^{2}}{4i}}\left({l(l+1)-m^{2}-m-l(l+1)+m^{2}-m}\right)}
= ℏ 2 4 i ( − 2 m ) = i ℏ 2 m 2 {\displaystyle ={\frac {\hbar ^{2}}{4i}}(-2m)={\frac {i\hbar ^{2}m}{2}}}