Template:!
Group work of Team 1
Questions
(a) Show that the operator
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{R}_{\Delta \phi} \equiv \exp \left( \frac{i \Delta \phi \hat{L}_z}{\hbar} \right)}
when acting on the function Failed to parse (unknown function "\math"): {\displaystyle f(\pi) \!<\math> changes <math> f \! } by a rotation of coordinates about the axis so that the radius through is rotated to the radius through . That is, show that
- changes by rotating to a new value on the surface of the sphere of radius , but rotated away from through the azimuth , so that . For infinitesimal displacement , we may write
Solutions
(a)
(b) Let be an infinitesimal angle so that in the limit that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n \gt 1 \! } . For the infinitesimal rotation
so that
- .
In the Taylor series expansion of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f\left( \mathbf{r}+\delta\mathbf{r} \right) \! } above we have only kept terms of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cal{O} \left(\delta \phi \right) \! } . [ The expression Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta \mathbf{r} = \delta \mathbf{\phi} \times \mathbf{r} \! } is valid only to terms of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cal{O} \left(\delta \phi \right) \! } .] In this manner we obtain
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f\left( \mathbf{r} + \delta \mathbf{r} \right) = \left( \hat{I} + \frac{i}{\hbar} \delta \mathbf{\phi} \cdot \mathbf{\hat{L}} \right) f(\mathbf{r}) = \hat{R}_{\delta\mathbf{\phi}} f(\mathbf{r}) }
For a finite rotational displacement through the angle Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{\Delta} \mathbf{\phi} = n \delta \mathbf{\phi} \! } , we apply the operator Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{R}_{\delta \mathbf{\phi}} \! } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n \! } times:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{R}_{n\delta\mathbf{\phi}} = \left( \hat{R}_{\delta\mathbf{\phi}} \right)^n = \left( \hat{I} + \frac{i}{\hbar} \delta \mathbf{\phi} \cdot \mathbf{\hat{L}} \right)^n }
and pss to the limit Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n \rightarrow \infty \! } or, equivalently, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta \phi / \delta \phi \rightarrow \infty \! } .
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{R}_{\Delta\phi} = \lim_{\Delta \phi / \delta \phi \rightarrow \infty} \left( \hat{I} + \frac{i}{\hbar} \delta \mathbf{\phi} \cdot \mathbf{\hat{L}} \right)^{\Delta \phi / \delta \phi} = e^{i \Delta \mathbf{\phi} \cdot \mathbf{\hat{L}} \hbar } .
The operator Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{R}_{\delta\mathbf{\phi}} \! } rotates Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{r} \! } to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{r} + \delta\mathbf{\phi}\times\mathbf{r} \! } with respect to a fixed coordinate frame. If, on the other hand, the coordinate frame is rotated through Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta \mathbf{\phi} \! } with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{r} \! } fixed in space, then in the new coordinate frame this vector has the value Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{r} - \delta \mathbf{\phi} \times \mathbf{r} \! } . Thus, rotation of coordinates through Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta \mathbf{\phi} \! } is generated by the operator <math> \hat{R}_{-\delta \mathbf{\phi}}.
(Note: This problem is excerpted from {\it "Introductory Quantum Mechanics", 2nd edition, p377-p379 which is written by Richard L. Liboff.)