Assume that the Hamiltonian for a system of N particles is H ^ = − ∑ i = 1 N ℏ 2 m ∇ i 2 + ∑ i = 1 N ρ i j [ | r i → − r j → | ] {\displaystyle {\hat {H}}=-\sum _{i=1}^{N}{\frac {\hbar }{2m}}\nabla _{i}^{2}+\sum _{i=1}^{N}\rho _{ij}[|{\overrightarrow {r_{i}}}-{\overrightarrow {r_{j}}}|]} , and Ψ ( r 1 → r 2 → ⋯ r N → , t ) {\displaystyle \Psi ({\overrightarrow {r_{1}}}{\overrightarrow {r_{2}}}\cdots {\overrightarrow {r_{N}}},t)} is the wave fuction.
We define: ρ ( r → , t ) = ∑ ρ i ( r → , t ) {\displaystyle \rho ({\overrightarrow {r}},t)=\sum \rho _{i}({\overrightarrow {r}},t)}
j → ( r → , t ) = ∑ j i → ( r → , t ) {\displaystyle {\overrightarrow {j}}({\overrightarrow {r}},t)=\sum {\overrightarrow {j_{i}}}({\overrightarrow {r}},t)}
ρ 1 ( r 1 → , t ) = ∫ ⋯ ∫ d 3 r 3 d 3 r 3 ⋯ d 3 r N Ψ ⋆ Ψ {\displaystyle \rho _{1}({\overrightarrow {r_{1}}},t)=\int \cdots \int d^{3}r_{3}d^{3}r_{3}\cdots d^{3}r_{N}\Psi ^{\star }\Psi }
j → ( r → , t ) = ℏ 2 i m ∫ ⋯ ∫ d 3 r 3 d 3 r 3 ⋯ d 3 r N ( Ψ ⋆ ∇ 1 Ψ − Ψ ∇ 1 Ψ ⋆ ) {\displaystyle {\overrightarrow {j}}({\overrightarrow {r}},t)={\frac {\hbar }{2im}}\int \cdots \int d^{3}r_{3}d^{3}r_{3}\cdots d^{3}r_{N}(\Psi ^{\star }\nabla _{1}\Psi -\Psi \nabla _{1}\Psi ^{\star })}
To verify: ∂ ρ ∂ t + ∇ ⋅ j → = 0 {\displaystyle {\frac {\partial \rho }{\partial t}}+\nabla \cdot {\overrightarrow {j}}=0}
Solution:
∂ ρ ∂ t = ∂ ∂ t ∑ i ρ i ( r → , t ) {\displaystyle {\frac {\partial \rho }{\partial t}}={\frac {\partial }{\partial t}}\sum _{i}\rho _{i}({\overrightarrow {r}},t)}
= ∑ i ∫ ⋯ ∫ d 3 r 1 ⋯ d 3 r i − 1 d 3 r i + 1 ⋯ d 3 r N ( Ψ ⋆ ∂ Ψ ∂ t + ∂ Ψ ⋆ ∂ t Ψ ) {\displaystyle =\sum _{i}\int \cdots \int d^{3}r_{1}\cdots d^{3}r_{i-1}d^{3}r_{i+1}\cdots d^{3}r_{N}(\Psi ^{\star }{\frac {\partial \Psi }{\partial t}}+{\frac {\partial \Psi ^{\star }}{\partial t}}\Psi )}
= ∑ i ρ i ( r i → , t ) {\displaystyle =\sum _{i}\rho _{i}({\overrightarrow {r_{i}}},t)}
Ψ ( r 1 → r 2 → ⋯ r N → , t ) {\displaystyle \Psi ({\overrightarrow {r_{1}}}{\overrightarrow {r_{2}}}\cdots {\overrightarrow {r_{N}}},t)}
{ ℏ i ∂ Ψ ∂ t = ∑ k ( − ℏ 2 2 m ∇ 2 ) Ψ + ∑ j k v j k Ψ − ℏ i ∂ Ψ ⋆ ∂ t = ∑ k ( − ℏ 2 2 m ∇ k 2 ) Ψ ⋆ + ∑ j k v j k Ψ ⋆ {\displaystyle {\begin{cases}\hbar i{\frac {\partial \Psi }{\partial t}}=\sum _{k}(-{\frac {\hbar ^{2}}{2m}}\nabla ^{2})\Psi +\sum _{jk}v_{jk}\Psi \\-\hbar i{\frac {\partial \Psi ^{\star }}{\partial t}}=\sum _{k}(-{\frac {\hbar ^{2}}{2m}}\nabla _{k}^{2})\Psi ^{\star }+\sum _{jk}v_{jk}\Psi ^{\star }\end{cases}}}
∂ Ψ ∂ t {\displaystyle {\frac {\partial \Psi }{\partial t}}} , ∂ Ψ ⋆ ∂ t {\displaystyle {\frac {\partial \Psi ^{\star }}{\partial t}}}
∂ ρ i ∂ t = − ∫ ⋯ ∫ d 3 r 1 ⋯ d 3 r i − 1 d 3 r i + 1 ⋯ d 3 r N ⋅ ∑ k ℏ 2 i m ( Ψ ⋆ ∇ k 2 Ψ − Ψ ∇ k 2 Ψ ⋆ ) {\displaystyle {\frac {\partial \rho _{i}}{\partial t}}=-\int \cdots \int d^{3}r_{1}\cdots d^{3}r_{i-1}d^{3}r_{i+1}\cdots d^{3}r_{N}\cdot \sum _{k}{\frac {\hbar }{2im}}(\Psi ^{\star }\nabla _{k}^{2}\Psi -\Psi \nabla _{k}^{2}\Psi ^{\star })}
= − ∫ ⋯ ∫ d 3 r 1 ⋯ d 3 r i − 1 d 3 r i + 1 ⋯ d 3 r N ⋅ ∑ k ℏ 2 i m ∇ k ⋅ ( Ψ ⋆ ∇ k Ψ − Ψ ∇ k Ψ ⋆ ) {\displaystyle =-\int \cdots \int d^{3}r_{1}\cdots d^{3}r_{i-1}d^{3}r_{i+1}\cdots d^{3}r_{N}\cdot \sum _{k}{\frac {\hbar }{2im}}\nabla _{k}\cdot (\Psi ^{\star }\nabla _{k}\Psi -\Psi \nabla _{k}\Psi ^{\star })}
∇ ⋅ j → ≡ ∑ i ∇ i ⋅ ∑ i j i ( r i → , t ) {\displaystyle \nabla \cdot {\overrightarrow {j}}\equiv \sum _{i}\nabla _{i}\cdot \sum _{i}j_{i}({\overrightarrow {r_{i}}},t)}
= ∇ 1 ⋅ j 1 → ( r 1 → , t ) + ∇ 2 ⋅ j 2 → ( r 2 → , t ) + ⋯ ∇ i ⋅ j i → ( r i → , t ) ⋯ {\displaystyle =\nabla _{1}\cdot {\overrightarrow {j_{1}}}({\overrightarrow {r_{1}}},t)+\nabla _{2}\cdot {\overrightarrow {j_{2}}}({\overrightarrow {r_{2}}},t)+\cdots \nabla _{i}\cdot {\overrightarrow {j_{i}}}({\overrightarrow {r_{i}}},t)\cdots }
= ∑ i ∇ i ⋅ j i → ( r i → , t ) {\displaystyle =\sum _{i}\nabla _{i}\cdot {\overrightarrow {j_{i}}}({\overrightarrow {r_{i}}},t)}
= ℏ 2 i m ∑ i ∫ ⋯ ∫ d 3 r 1 ⋯ d 3 r i − 1 d 3 r i + 1 ⋯ d 3 r N × ∇ j ⋅ ( Ψ ⋆ ∇ k Ψ − Ψ ∇ k Ψ ⋆ ) {\displaystyle ={\frac {\hbar }{2im}}\sum _{i}\int \cdots \int d^{3}r_{1}\cdots d^{3}r_{i-1}d^{3}r_{i+1}\cdots d^{3}r_{N}\times \nabla _{j}\cdot (\Psi ^{\star }\nabla _{k}\Psi -\Psi \nabla _{k}\Psi ^{\star })}
∂ ρ ∂ t = ∑ i ∂ ρ ∂ t = ∑ i ∫ ⋯ ∫ d 3 r 1 ⋯ d 3 r i − 1 d 3 r i + 1 ⋯ d 3 r N × ∑ k ℏ 2 i m ∇ k ⋅ ( Ψ ⋆ ∇ k Ψ − Ψ ∇ k Ψ ⋆ ) {\displaystyle {\frac {\partial \rho }{\partial t}}=\sum _{i}{\frac {\partial \rho }{\partial t}}=\sum _{i}\int \cdots \int d^{3}r_{1}\cdots d^{3}r_{i-1}d^{3}r_{i+1}\cdots d^{3}r_{N}\times \sum _{k}{\frac {\hbar }{2im}}\nabla _{k}\cdot (\Psi ^{\star }\nabla _{k}\Psi -\Psi \nabla _{k}\Psi ^{\star })}
i ≠ k {\displaystyle i\neq k}